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Gravitational Waves: New Eyes to observe the Universe
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tensor perturbation
from inflation
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Inflation realizes
not only

by quantum fluctuations.

but also

Homogeneous
Background Radiation
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tiny Gaussian fluctuations

This is where Quantum 
Physics comes in.
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Regions with more expansion is more curved

“inflaton”
and its 

fluctuation

In each Hubble time        , quantum fluctuations with an amplitude
and the initial wavelength              is generated and

stretched by inflation continuously. 
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In the standard slow-roll inflation:



The standard calculation of curvature perturbation
in inflationary cosmology is based on

• linear perturbation theory
• tree level quantum field theory
• superhorizon conservation

One-to-one correspondence between the scale 
of fluctuation and 
its generation time.

We can probe models
inflation by observing
perturbation spectrum.
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Observationally, we note that the amplitude of curvature 
perturbations is severely constrained only on large scales 
probed by CMB.

Horizon mass

Green and Kavanagh (2007.10722)

Amplitude2
of curvature
perturbation



If we realize large-amplitude fluctuations on small scales, 
Priomrdial Black Holes (PBHs) may have been produced when 
the region with large fluctuation entered the Hubble horizon.

Constraints on the fraction of PBH dark matter

Carr, Kohri, Sendouda, JY: Rep. Prog. Phys. 84(2021) 116902



Black Holes found by Gravitational Wave Observations



There are many massive black holes in 
our Universe!

30M
!

The uninitiated tend to think that there are many 
massive black holes with 〜 in the universe, 
but one must take into account that the heavier 
the object, the stronger the gravitational wave 
signal, and therefore the farther it can be seen.

We need to make a volume-limited sample in 
astronomy removing the aforementioned bias,
but the sources are burst events in binary 
systems so it is highly nontrivial to make such
a sample.



What is the origin of these heavy black holes?

15M
!

(Belczynski et al 2020)
PPSN=Pair-instability Pulsation SuperNova
PSN=PISN=Pair-instability SuperNova

Black holes produced from collapse of normal stars have
masses at most due to the mass loss by stellar winds.



NO black holes more massive than          ?45M
!

(Renzo et al 2020)
PISN=Pair-instability SuperNova

What is the origin of these heavy black holes?



First stars, PopIII stars with no Metals
1. Relatively more massive at formation
2. Smaller radius than current stars for the same mass
3. Smaller mass loss due to stellar winds

2014

What is the origin of these heavy black holes?



それにしても、重いブラックホールの起源は何か？

Primordial Black Hole Scenario

2014年

What is the origin of these heavy black holes?





(Hütsi, Raidal, Vaskonen, Veermäe 2021)

Monochromatic mass function assumed



(Hütsi, Raidal, Vaskonen, Veermäe 2021)

Lognormal mass function assumed



We must enhance the amplitude of the power
spectrum by 7 digits on the relevant scales.

2014年通常のインフレーションモデルで実現されるスペクトル

Primordial Black Hole Scenario

Desired 
Power 
Spectrum



それにしても、重いブラックホールの起源は何か？

can be realized in a simple single field model.

ゆらぎのスペクトルを特定のスケールで
７桁以上増幅しないといけない。

2014年

波数＝(長さ)-1

自
乗
振
幅

簡単なインフレーションモデルでも実現できる

ただし

Primordial Black Hole Scenario

2008



2014年

with a Coleman Weinberg potential

In this model, the would-
be decaying mode grows
at the onset of new inflation
after chaotic inflation, which
is now known as ultra slow-
roll (USR) inflation
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1. PBHs are produced when a large-amplitude
perturbed region entered the Hubble horizon.

2. Their mass is of order of the horizon mass

3. Tensor perturbations or gravitational waves 
are produced by second-order density 
perturbations.





As the observation
time increases,

this region can be
excluded, too.

Constraint on the fractional energy density of PBHs
at formation, β.

2009



(Non-) observation of pulsar timing disturbance 
would reject PBH hypothesis of LVK black holes.
PTAs would detect gravitational wave signals if 
LVK black holes are of primordial origin.





(Non-) observation of pulsar timing disturbance 
would reject PBH hypothesis of LVK black holes.

PTAs would detect gravitational wave signals if 
LVK black holes are of primordial origin.

Correct Proposition (Saito & JY 2009)

Contraposition is also correct. 対偶命題

Counter-Proposition
Positive detection of GWs by PTAs would prove
the PBH hypothesis of LVK black holes.



A space-based laser interferometer B-DECIGO can do it!

B-DECIGO

B-DECIGO

It can observe 30-30 
binary BH coalescence
events up to z〜30,
where there is no BHs 
from first stars.

M⊙

Talk by Seiji Kawamura
tomorrow



While pursuing such a long-term project
we theorists continue our own studies.



What we wish to argue is that single-field models
realizing a desired spectrum suffer from large 
one-loop correction to the power spectrum and 
hence not viable.

work with Jason Kristiano



Cosmological perturbation theory
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Introducing Mukhanov-Sasaki (MS) variable 𝑣 = 𝑧𝜁𝑀!" with 

𝑧 = 𝑎 2𝜖, the second-order action becomes 

Starting from the action

and assuming quasi de Sitter background                   ,  

we calculate the action for the curvature perturbation 𝜁 to 2nd order.

𝑆(") = !
"∫ d𝜏d

)𝑥 (𝑣*)" − (𝜕+𝑣)" +
,!!

, 𝑣
" .

behaves like a free massless scalar field 
with a noncanonical normalization.
ς

𝑎(𝑡) ∝ 𝑒-.

𝑎 𝜏 ≅ −
1
𝐻𝜏

𝜏: conformal time



𝑆(") = $
"
∫ d𝜏d%𝑥 (𝑣&)" − (𝜕'𝑣)" +

(##

(
𝑣" .

It has a canonical kinetic term, so can easily be quantized.

𝑣/** + 𝑘" − ,!!

, 𝑣/ = 0.
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For slow-roll inflation                   we find1,  1e d! !
2
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𝑣/** + 𝑘" − "
0"

𝑣/ = 0.

𝑣/(𝜏) =
𝒜#
"/ 1 − +

/0 𝑒2+/0 + ℬ#
"/ 1 + +

/0 𝑒+/0.

𝒜) = 1 and ℬ) = 0 is the solution corresponding to the Minkowski
mode function (vacuum) at high frequency or in the beginning.

𝑣)(𝜏) =
1
2𝑘
𝑒*')+

1kt !

Mukhanov Sasaki equation

𝑣 𝑥, 𝜏 = 9
𝑑!𝑘
2𝜋 ! 𝑣" 𝜏 >𝑎"𝑒#"$ + 𝑣"∗ 𝜏 >𝑎"

&𝑒'#"$



Quantization
†ˆ ˆ ˆ( , ) ( ) ( )v v a v at t t*
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Since 𝑣 has a canonical kinetic term, conjugate momentum is
simply                      and the standard quantizationˆ ˆ( , ) ( , )vp t t¢=k k

[ ]ˆ ˆ( , ), ( , ) ( )v it p t d¢ ¢= -k k k k!

can be done with the normalization 𝑣/*∗𝑣/ − 𝑣/* 𝑣/∗ = 𝑖 .

From                         , we find the mode function       

𝜁)(𝜏) =
',

"-$% . ⋆

0&'()

) ⁄+ , (1 + 𝑖𝑘𝜏),

where ⋆ denotes horizon crossing condition 𝜏 = −1/𝑘.
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Curvature perturbation:  



In the superhorizon regime            , vacuum fluctuation is 
constant and given by 

1kt- !
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Quantization

Vacuum expectation value yields power spectrum

†ˆ( , )ˆ ˆ ˆ( , ) ( ) ( )
2pl
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“Classicalilzation” of curvature perturbation
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( ) ( )V t V t* = -k k in the superhorizon limit

( )†ˆ ˆ ˆ( , ) ( ) a az t V t -= -k k kk

( )2 2 †ˆˆ ˆ ˆ( , ) ( ) ( , ) ( ) ( )pl plM z M z a aVp t z t V t -¢ ¢= = -k k kk k

So we find                               
and its conjugate momentum The same operator

dependence!

When the decaying mode is negligible,          and            have the same
operator dependence and apparently commute with each other.

ˆ( , )z tk ˆ ( , )Vp tk

Long-wave quantum fluctuations behave 
as if classical statistical fluctuations.

Origin of large scale
structures and CMB
anisotropy



More precise statements

[ ]ˆ ˆ ˆ ˆ( , ), ( , ) ( , ), ( , ) ( )v iVz t p t t p t dé ù¢ ¢ ¢= = -ë ûk k k k k k! always holds.
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What we find is

decreases exponentially.

𝜁/*∗𝜁/ − 𝜁/* 𝜁/∗ =
𝑖

2𝑎"𝜖𝑀$%
"

In terms of the mode function

in standard slow-roll inflation with                       . 1conste » !

0! in standard slow-roll inflation.
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In order to realize temporal enhancement of curvature perturbation,
one is tempted to adopt a model in which ε decreases temporarily.

  eÜ! "

PBH scale

CMB scale

SR: slow roll periods
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USR: ultra-slow roll period (flat potential)

[ ] 0V f¢ @ 3 0Hf f+ =!! ! 3 ( )a tf -µ! " 𝜖 =
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Ivanov, Naselsky, & Novikov (1994)



Ultra slow-roll (USR) inflation

𝜖 =
𝜙
·
)

2𝑀*+
) 𝐻)

∝ 𝑎', Second slow-roll parameter: 6
H
eh
e

º = -
!

In such a regime, contrary to the standard slow-roll inflation,
curvature perturbation grows even on superhorizon scale, as it
satisfies

N Hdt= ò

In the standard inflation with              ,  on superhorizon, ,| | 1e h !
constV =k

3 3Ne aV - -µ =k

constant mode
decaying mode

constV =k
3 3Ne aV µ =k

constant mode
growing mode

In ultra slow-roll inflation with                  ,  on superhorizon1, 6e h = -!

“classical” perturbation

quantum nature?

Kinney (1998,2005), JY & Inoue (2002)
Martin, Motohashi, & Suyama (2013)
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Indeed we find

4aµ !

which induces significant correction as we will see shortly.

In USR, the standard wisdom does not apply!

NB Such superhorizon growth of perturbation was also found in the chaotic 
new inflation model (JY 1999) and its analytic interpretation was given in 
(Saito, JY, Nagata 2008).
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Indeed we find

4aµ !

which induces significant correction as we will see shortly.

In USR, the standard wisdom does not apply!

NB To the best of my knowledge, such superhorizon growth of perturbation
was first found in the chaotic new inflation model (JY 1999) and its analytic
interpretation was given in (Saito, JY, Nagata 2008)



Mode function in ultra slow-roll inflation
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For slow-roll inflation                   we find1,  1e d! ! 2
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For ultra slow-roll inflation we find 3
H
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𝑣/** + 𝑘" − "
H" 𝑣/ = 0 both in SR and USR regimes!

Mukhnanov Sasaki equation 



Mode function in ultra slow-roll inflation

Initial slow-roll regime (CMB scale)

Ultra slow-roll regime (PBH scale)

The mode function in this regime is
found by matching 𝜍) and 𝜍)& at the
transition time    .τ s

grow 3aµ



After some period of USR inflation, the system returns to SR regime
again and inflation is terminated at     .  τ 0

At the second transition we perform similar matching again to
obtain the full solution of        .  ς k (τ )

Byrnes et. al. (1811.11158), Liu et. al. (2003.02075), 
Karam et. al. (2205.13540)

CMB

PBH

ΔI(JKL)" ≈ ΔI(MN)" (𝑘I)
𝑘O
𝑘I

P

[ ]...



𝑆 = !
"∫ d

#𝑥 −𝑔 𝑀$%
" 𝑅 − (𝜕&𝜙)" − 2𝑉(𝜙) .

ς
So far we have considered only second-order action
of    from the full action, which led to linear perturbation.

Third order terms generate non-Gaussianity and
one-loop correction to the power spectrum

The most relevant is the last term
as 𝜂 changes abruptly at transitions.

𝐻QRS(𝜏) = −
1
2
𝑀$%
" ∫ d)𝑥𝜖𝜂*𝑎"𝜁*𝜁"



Unlike in particle physics, whose focus is transition
amplitude, we wish to evaluate an expectation value or
a correlation function.

In-in formalism 

: evaluated toward the end of inflation                    .

Perturbative expansion

𝐻QRS(𝜏) = −
1
2
𝑀$%
" ∫ d)𝑥𝜖𝜂*𝑎"𝜁*𝜁"



After substituting 𝐻567 𝜏 to the perturbative expansion, we find

Time integral is nonvanishing only at 𝜏8 and 𝜏0
and the latter makes a dominant contribution.

As a result, we find

º -q k p

hD



The leading term is given by
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of USR regime as we argued.

( )
6 4 2

2
2 6 2 2 6 2

1 1Im( )
4 ( ) ( / ) 4 4

s e
e

ee SR s e pl SR pl s pl SR

k HH
a a a M M k M

t
V V t

tt e e e
*

æ öæ ö- -¢ = = = - ç ÷ç ÷ ç ÷è ø è ø
k k

at 𝜏 = 𝜏0, where we have used                                . 1( )e e
e e

Hk a H
H

t
t t

= = - = -



The leading term is given by

Im(𝜁!" 𝜁!∗) =
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of USR regime as we argued.

( )
6 4 2

2
2 6 2 2 6 2

1 1Im( )
4 ( ) ( / ) 4 4

s e
e

ee SR s e pl SR pl s pl SR

k HH
a a a M M k M

t
V V t

tt e e e
*

æ öæ ö- -¢ = = = - ç ÷ç ÷ ç ÷è ø è ø
k k

at 𝜏 = 𝜏0, where we have used                                . 1( )e e
e e

Hk a H
H

t
t t

= = - = -

This is in contrast to the standard SR inflation 
in which Im(𝜁)& 𝜁)∗) becomes exponentially small.  



The leading term is given by

Im(𝜁!" 𝜁!∗) =
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takes a big value at the end
of USR regime as we argued.
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One-loop correction

ΔI(!)
" (𝑝) = !

# (Δ𝜂(𝜏O))
"ΔI(MN)

" (𝑝)∫/$
/% T/

/ ΔI(U)
" (𝑘)

ΔI(!)" (𝑝) =
1
4
(Δ𝜂(𝜏O))" ΔI(MN)" (𝑝)

" 𝑘O
𝑘I

P
1.1 + log

𝑘O
𝑘I



ΔI(!)" ≪ ΔI(MN)" : !
# (Δ𝜂(𝜏O))

"ΔI(MN)" (𝑝) /%
/$

P
1.1 + log /%/$ ≪ 1.

For perturbation theory to be valid, we require 
one loop correction << tree level (linear theory) result

62 = 36 2.1×10−9

ΔI(JKL)" ≪ 0.03
𝑘I
𝑘∗

2U.U)
we obtain           ,  or                            .ke

ks
<15

(𝑛I = 0.97 at 𝑘∗ = 0.05Mpc2!)



• Consider two examples that are of recent interest:
– PBHs as dark matter with mass 𝒪(102!W)𝑀⊙ corresponding 

to scale 𝒪(10!#)Mpc2! has a bound ΔI(JKL)" ≪ 0.01.
– PBHs as LIGO-Virgo BHs with mass 𝒪(10)𝑀⊙ corresponding 

to scale 𝒪(10P)Mpc2! has a bound ΔI(JKL)" ≪ 0.02.

• In both cases, the upper bound contradicts with typical requirement 
to form a significant abundance of PBHs, which is Δ8(:;<)" ∼ 𝒪(0.01).

Kristiano and JY 2211.03395



l Bump or dip: Mishra and Sahni (1911.00057)
l Upward or downward step: Cai et. al. (2112.13836), Inomata et. al. (2104.03972)
l Polynomial shape: Hertzberg and Yamada (1712.09750), Ballesteros et. al. 

(2001.08220)
l Chaotic new inflation with a Coleman-Weinberg potential: Saito, JY, & Nagata 

(0804.3470)

A number of single-field inflation models accommodating
PBH formation have the same feature, namely, sharp
transition of    . h

All these single-field inflation models producing sizable
amount of PBHs are in trouble.



Can PTAs observations be explained by
tensor perturbations produced by second-
order scalar perturbations from ultra slow-
roll inflation ? 

2310.20564
Mu, Liu, Cheng, Kuo

ΔFG > 0.025 is required, 
so inconsistent with
our constraint.

See also 2308.08546
Ellis et al.



• Higher order quantum effects are important
in single-field inflation models with peaky
spectrum due to USR behavior.

• Primordial black hole formation and second
order gravitational wave background from 
inflation may be important clues to quantum
effects during inflation.

• PBHs and SGWB from inflation may require
multi-field setting.




