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Pulsar Timing Array results



Hellings-Downs Curve
[NANOGrav, 2306.16213] [PPTA, 2306.16215] [EPTA/InPTA, 2306.16214]

[CPTA, 2306.16216]



Gravitational-Wave Spectrum
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2π2f2
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3H2
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[IPTA, 2309.00693]
  (90% credible region) 5 − γ = 1.8 ± 0.6

[NANOGrav, 2306.16213]



PTA, Induced GW, and PBH



New Physics Interpretations [NANOGrav, 2306.16219]

See also [EPTA/InPTA, 2306.16227], [Bian et al., 2307.02376], [Figueroa, 2307.02399], and [Ellis et al, 2308.08546].
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New Physics Interpretations [NANOGrav, 2306.16219]

See also [EPTA/InPTA, 2306.16227], [Bian et al., 2307.02376], [Figueroa, 2307.02399], and [Ellis et al, 2308.08546].

Domain Walls
Cosmic StringsPhase Transition

Inflationary GW

Scalar-Induced GW (= Induced GW = Secondary GW = Second-order GW)

Note on the dark-radiation bound from BBN  .ΩGWh2 < 1.8 × 10−6

[Kohri, Terada, 1804.08577]



Scalar-Induced Gravitational Waves
What are they?

Why important?

Gravitational waves induced by (primordial) curvature perturbations via (derivative) interactions in General Relativity.

ds2 = − a2(1 + 2Φ)dη2 + a2 ((1 − 2Ψ)δij +
1
2

hij) dxidxj

Gravitational potential Curvature perturbations GW (tensor mode)

Equation of motion h′￼′￼k(η) + 2ℋh′￼k(η) + k2hk(η) = 4Sk(η)

where  is the conformal Hubble, and the source term isℋ = aH

Sk = ∫
d3q

(2π)3/2
eij(k)qiqj (2ΦqΦk−q +

4
3(1 + w)

(ℋ−1Φ′￼q + Φq)(ℋ−1Φ′￼k−q + Φk−q))

(In the absence of anisotropic stress, .)Φ = Ψ

• They give us some information on small-scale cosmological perturbations 
and the underlying inflation model.


• They give us some hints on the equation of state and reheating dynamics 
of the early Universe.


• There is also a strong connection to the primordial-black-hole scenario.

• They can fit the nHz SGWB found by PTAs!

[Inomata, Nakama, 1812.00674]

[Saito, Yokoyama, 0812.4339; 0912.5317]

See, e.g., [Domènech, 1912.05583], [Inomata, Kohri, Nakama, Terada, 1904.12878; 1904.12879].

[Ananda, Clarkson, Wands,  gr-qc/0612013], [Baumann, Steinhardt, Takahashi, Ichiki,  hep-th/0703290]      For reviews, see [Yuan, Huang, 2103.04739], [Domènech, 2109.01398].
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Relation to Primordial Black Holes
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[Chen, Yuan, Huang, 1910.12239]

…

Inflation

Enhanced Primordial 
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Black Hole

2nd-order 
(induced) GW

Exponentially  
sensitive

Quadratically  
sensitive

After NANOGrav-12.5 [Vaskonen, Veermäe, 2009.07832]

[De Luca, Franciolini, Riotto, 2009.08268]

[Kohri, Terada, 2009.11853]

[Zhou, Jiang, Cai, Sasaki, Pi, 2010.03537]

[Domènech, Pi, 2010.03976]

[Inomata, Kawasaki, Mukaida, Yanagida, 2011.01270]

[Dandoy, Domcke, Rompineve, 2302.07901]

…

GW from 
mergers

After June 29

δ(k) > δcr

Horizon re-entry of rare 
enhanced perturbations

Hubble horizon

Gravitational collapse

PBH larger than the Jeans radius

~ Hubble radius

[Guo, Khlopov, Liu, Wu, Wu, Zhu, 2306.17022]

[Franciolini, Iovino, Vaskonen, Veermäe, 2306.17149]

[Cai, He, Ma, Yan, Yuan, 2306.17822]

[Depta, Schmidt-Hoberg, Tasillo, 2306.17836]

[Inomata, Kohri, Terada, 2306.17834]

[Gouttenoire, Vitagliano, 2306.17841]

[Huang, Cai, Jiang, Zhang, Piao, 2306.17577]

[Wang, Zhao, Li, Zhu, 2307.00572]

[Liu, Chen, Huang, 2307.01102]

[Gouttenoire, Trifinopoulos, Valogiannis, Vanvlasselaer, 2307.01457]

[Jhurani, Gunhal, 2307.02677]

[Unal, Papageorgiou, Obata, 2307.02322]

[Figueroa, Pieroni, Ricciardone, Simakachorn, 2307.02399]

[Zhu, Zhao, Wang, 2307.03095]
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(including works related not 
to induced GWs but to PBHs)
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 spectrum from Induced-GWf2



IR tail of the induced GWs

k

𝒫ζ(k)

f ( = k/2π)

ΩGW( f )

IR tail 
(usually )∝ f 3

ΩGW ∼ 𝒫ζ(k)2

[Cai, Pi, Sasaki, 1909.13728]

[Yuan, Chen, Huang, 1910.09099]

[Domènech, Pi, Sasaki, 2005.12314]

[Espinosa, Racco, Riotto, 1804.27732]

[Kohri, Terada, 1804.08577]



Explaining    ScalingΩGW ∝ f 2
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[Harigaya, Inomata, Terada, 2309.00228]

sharp peak
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Implications for Primordial Black Holes

OGLE+HSC 
favored region 

(95% CL allowed region

to explain the excess)

[Inomata, Kohri, Terada, 2306.17834]

The excess events of microlensing at OGLE: [Mróz et al., 1707.07634]

Interpretation by PBHs: [Niikura et al., 1901.07120]

, and  from top to bottom.

The sensitivity curves were taken from [Schmitz, 2002.04615].


The HLV O3 constraint is from [Abbott et al. (LIGO-Virgo-KAGRA), 2101.12130].

M/M⊙ = 1.2 × 10−4, 1.6 × 10−4 2.2 × 10−4

See also [Franciolini et al., 2306.17149]
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 Spectrum in the Kination Scenariof2

More generally, it nontrivially depends on the equation-of-state parameter :  





for the IR tail part of the spectrum.

w

ΩGW( f ) ∼ f 3−2|(1−3w)/(1+3w)|

• Relative redshift factor for subhorizon modes during kination

• Growth factor for superhorizon modes from growing subhorizon density perturbations
The source term decreasing slower than the Hubble scale

an additional factor of ( afixed

a(k) )
2

∼ f

an additional factor of ( a(k)
afixed )

4

∼ f −2

[Domènech, Pi, Sasaki, 2005.12314]

Multiplying the above factors to the standard one ( ), we obtain .f3 f3 ⋅ f −2 ⋅ f = f2

During an era with ,w = 1

,


,

2πf = k = ℋ ∝ a−2

a ∝ η1/2

  : conformal time


: conformal Hubble parameter

η

ℋ

w :=
P
ρ

= 1 ρ ∝ a−6



Induced GW scenario with kination

1.  Smaller curvature perturbation is required to fit the PTA data.

2.  It will be harder for a PBH to form during kination.

This is because the GW fraction is enhanced during kination.

ΩGW ∝ a2

δc ≈ 0.4 − 0.75

fPBH ≡
ρPBH

ρDM
∼ exp (−

δ2
c

2𝒫ζ(k(M)) )

The PBH abundance is exponentially suppressed 
compared to the standard scenario.

Example GW spectrum PBH abundance

The PTA data can be fit without PBH overproduction.
[Harigaya, Inomata, Terada, 2309.00228]See, e.g., [Escrivà et al., 2007.05564] and references therein.

See also [Balaji et al., 2307.08552] for a similar scenario.

ρ ∝ a−6w :=
P
ρ

= 1



Summary and Conclusion

The PTA data may be indicating  spectrum, which can be interpreted 
in terms of (the IR tail of) the scalar-induced GWs.

ΩGW ∝ f 2

k

𝒫ζ(k)

f

ΩGW( f )

k

𝒫ζ(k)

f

ΩGW( f )

IR tail

IR tail

during kination

(w = 1)

∝ f 2

∝ f 2

[Harigaya, Inomata, Terada, 2309.00228]

sharp peak [Inomata, Kohri, Terada, 2306.17834]

• Fitting the PTA data well.

• No PBH overproduction.

• Fitting the PTA data well.

• Associated with  PBHs.


• Their binary mergers lead to additional GW signals.

• Small parameter region explaining microlensing data too.

𝒪(10−4) M⊙





Appendix



Astrophysical Interpretation
Supermassive Black Hole Binary Mergers

The simplest model doesn’t work well.

• Circular orbit

• Energy loss only due to GW emission

Interactions with the environment are important.



Universal Infrared   scalingf3

Central Limit Theorem 𝒫h(kL) ∝
1

Npatch
= ( kL

kS )
3

[Cai, Pi, Sasaki, 1909.13728]

[Hook, Marques-Tavares, Racco, 2010.03568]

• Finite duration of GW generation on subhorizon scales

• Radiation-dominated era

Small Hubble patches Large Hubble patches

no further redshift factors ΩGW( f ) ∝ f3



 Spectrum from a sharp peakf2

An analysis for the lognormal curvature perturbations in [Pi, Sasaki, 2005.12306] is useful.

𝒫ζ =
Aζ

2πΔ
exp (−

ln2(k/k*)
2Δ2 )

• For a narrow peak: Δ ≪ 1

• For a broad peak: Δ ≫ 1

No  tail.    has a lognormal peak with a width .f2 ΩGW Δ/ 2

The range of the   part is controlled by .f2 Δ

fb fp

f3

f2

fp = (2/ 3) × 2πk*

fb ≈ 3Δ fp

ΩGW( f )



Our Recipe for a PBH
We have basically followed the recipe in the NANOGrav-15 paper [Afzal et al. (NANOGrav), 2306.16219], which is relatively simple.

• Carr’s formula (a.k.a. the Press-Schechter formalism)


• Critical density 


• The ratio between the PBH mass and the horizon mass 


• The relativistic degrees of freedom 


• The Gaussian window function 


• Including the transfer function of the density perturbations

• The nonlinear relation between the curvature and density perturbations has been neglected.

• We have not adopted the effects of the critical collapse.

δc = 0.45

γ = 0.2
g* = g*,s = 80

W(k) = exp(−k2/2)

The effects of non-Gaussianity were studied in 

PBH overproduction was reported (except from Wang et al.).

The effects of softening  and/or  were studied inw cs

Studies by other groups

[Franciolini, Iovino, Vaskonen, Veermäe, 2306.17149]

[Wang, Zhao, Li, Zhu, 2307.00572]

[Liu, Chen, Huang, 2307.01102]

[De Luca, Franciolini, Riotto, 2009.08268]

See also [Franciolini, Racco, Rompineve, 2306.17136], [Abe, Tada, 2307.01653]

(in [Inomata, Kohri, Terada, 2306.17834])



GWs from Binary PBH Mergers

[Sasaki, Suyama, Tanaka, Yokoyama, 1603.08338]
[Nakamura, Sasaki, Tanaka, Thorne, 1997]

Binary formation in the radiation era

R(z) = ( fPBHΩCDMρc

M ) dPt

dt

dPt

dt
=

3
58 [−( t

t0 )
3
8

+ ( t
t0 )

3
37] 1

t for t < tc

3
58 ( t

t0 )
3
8 [−1 + ( t

tc )
− 29

56 ( 4π
3 fPBH)

− 29
8 ] 1

t for t ≥ tc,

dE
dfs

=
(Gπ)2/3 M5/3

c

3

f −1/3
s for fs < f1

w1 f 2/3
s for f1 ≤ fs < f2

w2
σ4 f 2

s

(σ2 + 4(fs − f2)2)
2 for f2 ≤ fs ≤ f3

0 for fs > f3

comoving merger rate

Ωmerger
GW ( f ) =

f
3H2

0 ∫
fcut

f −1

0
dz

R(z)
(1 + z)H(z)

dEGW

dfs

Energy spectrum at the source frame

chirp mass M5/3
c = m1m2(m1 + m2)−1/3

total mass Mt = m1 + m2

[Ajith et al., 0710.2335] [Ajith et al., 0909.2867]

[Sasaki, Suyama, Tanaka, Yokoyama, 1603.08338; 1801.05235]

t0 = (3/170){x̄4 /[(GM )3(4π fPBH/3)4]}
tc = t0(4π fPBH /3)37/3

x̄ = [3M /(4πρPBH,eq)]
1/3

source-frame frequency fs = (1 + z)f
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GWs from Binary PBH Mergers

torque

Binary Black Holes loose energy by emitting Gravitational Waves.

[Sasaki, Suyama, Tanaka, Yokoyama, 1603.08338]
[Nakamura, Sasaki, Tanaka, Thorne, 1997]
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