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Key [akeaways

Cosmic Superstrings Formation: Cosmic
strings with a low reconnection probabillity
emerge following the confinement phase
transition in pure YM theory.

Dark Matter Candidate in SO(2N): In
scenarios with SO(2Z2N), dark matter can be

explained by a "baryonic glueball.”

GW and DM from £ = éTr [F/JVFHV]
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Cosmic Strings: U(1) Symmetry Breaking

Formation of cosmic strings: Cosmic strings arise through the spontaneous
obreaking of U(1) symmetry.

Cosmic string

Figure from Daisuke Yamauchi's slide Figure from Hiramatsu et.al. '13
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Cosmic Strings: SU(N) Confinement

SU(N) gauge theory: The confinement phase transition leads to the connection
of quarks and anti-quarks by a color flux tube.

Positive hydrogen triplet

Recent lattice QCD results for the three-quark flux-tube formation.
(H. Ichie, V. Bornyakov, T. Streuer and G. Schierholz)

(From: Intemational Conference July 21-24, 2003 on Color
Confinement and Hadrons in Quantum Chromodynamics)
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Cosmic Strings: SU(N) Confinement

Duality between strong and weak coupling: Based on the duality between strong

and weak coupling theories, the color flux tube 1s recognized as a cosmic string.
Seiberg, Witten '94,

Strong coupling theory Weak coupling theory
high T: Deconfinement phase high T: Symmetric phase
low T: Confinement phase Duality low T: Higgs phase

q —> m

{q ./. 73/‘
color flux tube cosmicC string

This duality further suggests that color flux tubes can form even Iin the absence
of quarks. MY and Yonekura '22
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Cosmic Strings: SU(N) Confinement

Large N limit argument: The reconnection probability of color flux tubes can

be estimated by the Euler number of a diagram x (=2 —g¢ — k), leading to the
relationship P ~ N°X. ~ \

# of genus
# of holes
5
atter:

reconnect

l |
before: C> Q 't Hooft '74

See also Jackson, Jones, Polchinski '04,
Polchinski '88, Hanany Hashimoto '05
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Cosmic Strings: SU(N) Confinement

Electric-Magnetic Duality: Based on the duality, cosmic strings, which are
macroscopic color flux tubes, emerge during the confinement phase transition.

Witten '85, MY and Yonekura 22
String Tension: The string tension W is on the order of the dynamical scale
squared, ft ~ A°

Large N Limit Argument: Considering the large N limit, the probability of
reconnection between two cosmic strings is notably suppressed, with P ~ N %,

Holographic Dual Descriptions: In the context of holographic dual descriptions,
these cosmic strings correspond to fundamental (F-) strings or superstrings In the

realm of gravity theory.
See, e.qg., Witten '98, Polchinski, Strassler '00, Klebanov, Strassler ‘00, Maldacena, Nunez '00, Vata '00
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Cosmic Strings in Diverse Gauge Groups

Exploring Different Gauge Groups: While we've primarily focused on SU(N) and
cosmic F-strings, SO(Z2N) gauge theory introduces a distinct variety of cosmic
strings known as D-strings.

One-Form Symmetry Classification: We can classify the properties of these
cosmic strings using one-form symmetry, which imposes restrictions, particularly on
composite states of cosmic strings.

SU(N) > Zx F—stging D—Stri2ng
Zo X Zy (N = 4K) H NA
SOWD{ RS P N7 | exp(—cl)
Zy (N =2K+1)

MY and Yonekura '22
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Dynamics of cosmic strings and GW sighatures
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Dynamics of Cosmic Strings

Evolution of Long Strings: Over time, long strings evolve by shortening themselves
through self-reconnection processes.

—> O —> \Qf
rd TN AN

This results In a roughly constant number of long
strings per unit horizon volume, typically of the
order O(1) for the case of P = 1.

Figure from Hiramatsu et.al. '13
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Dynamics of Cosmic Strings

Evolution of Long Strings: Over time, long strings evolve by shortening themselves
through self-reconnection processes.

—> O —> \Qf

P

e

(energy loss rate) = (reconnection probability) x (density of strings)
x(# of colliding strings per unit time)
x (energy loss per reconnection event)
AP
().,

|
|
ge
S
3
o
=
<

— cet : correlation length

Avgoustidis, Shellard '05
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Dynamics of Cosmic Strings

Evolution of Long Strings: Over time, long strings evolve by shortening themselves
through self-reconnection processes.

—> O —> \Qf
rd TN AN

Statistical Modeling: The statistical characteristics of the cosmic string network can
be effectively described by a set of equations, often reterred to as the VOS model.

- d OO _ d O
Energy density: Thoo _ _ (2H(1 + vz)) Poc T (p—) ,
dt dt loop
Velocity dispersion: % = (1 —7°) (kE? — 2Hv> , —Pnec(eus)
X Kibble '85, Martins, Shellard '95, '96, '00

-1
curvature ~ H MY and Yonekura '22
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Gravitational Waves: Signatures of Cosmic Strings

Gravitational Wave Production: The dynamics of string loops give rise to the
generation of gravitational waves.

Vilenkin ‘81, Vachaspati, Vilenkin '85

(peak) B 1
{ QGW}LZ ~ 2.0 X 10 10 X Peff (1012

G —1
Fpeak) ~ 1.9 x 107% Hz x (10 a )
MY and Yonekura '22
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Gravitational Waves: Signatures of Cosmic Strings

Gravitational Wave Production: The dynamics of string loops give rise to the
generation of gravitational waves.

107° — S . I _
Peak amplitude of GW: | | Gu=gqx -1 .
. 1/2 10° , =107 '
(Qawh?) P ~ 2.5 x 10710 x P! (10_‘;) Gu=108 p_
- VK
C\'IQ 10—10 . GIL[: 7><1()‘15 P
Peak frequency: > , P=1q-1
1 O
—12
fPeak) ~ 1.9 x 1079 Hz x ( Gp ) A (U LISA = <
1()—12
. SKA CE
- . 107141 / ]
Physical parameters Iin the theory: oo
~ 2 10_16 | | | | | | | | | | | | | |
{ p~ A 10-*° 10° 10° 107™* 10 10° 10© 10°
—92
7~ N f [Hz]

MY and Yonekura 22, '23, (see also Ellis et.al. '23)
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Gravitational Waves: Signatures of Cosmic Strings

Gravitational Wave Production: The dynamics of string loops give rise to the
generation of gravitational waves.

Peak amplitude of GW: 1015 LV (03)
) e 1/2 L LUK
(Qawh?) P ~ 2.5 x 10710 x P! (10_‘§2> T .
10" STA
— hints
Peak frequency: g \
Q —1 © 10 L
ea — H
f(p k) ~ 1.9 x 1079 Hz x (1012> < en
109§ CE ET
Physical parameters in the theory:
{ 3 , 10° 10° 10° 10°
P~ N~

N
MY and Yonekura '22
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Baryonic gluepball as a dark matter candidate
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DM Candidate: Baryonic Glueball in SO(2N)

Post-Confinement Entities: Confinement
gives rise to both glueballs and cosmic strings.

. baryonic
evaporation

& | glueball

confined

"Baryonic Glueball”" in SO(2N): In SO(2N) phase

deconfined

gauge theory, the "pbaryonic gluepall” Is a phase

standout candidate for DM, thanks to Its long
Ifetime driven by an accidental symmetry in the

arge N limit. AN
O@2N)/SO2N) = Z,

B:ul“‘,UZN = Ci1iopn (F,Ul,uz)il o " (FHZN—1H2N)i2N—1i2N

Gross et.al. '20, MY and Yonekura '23
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DM Candidate: Baryonic Glueball in SO(2N)

Post-Confinement Entities: Confinement
gives rise to both glueballs and cosmic strings.

. baryonic
evaporation

& | glueball

confined

"Baryonic Glueball”" in SO(2N): In SO(2N) phase

deconfined

gauge theory, the "pbaryonic gluepall” Is a phase

standout candidate for DM, thanks to Its long
Ifetime driven by an accidental symmetry in the

large N Iimit.
Abundance Estimation: We estimate the P 0 aev 5 N ( s )3 ( A )“/2
abundance of "baryonic glueball" using the s 102Hpr) (1013 GeV

Kibble-Zurek mechanism.

MY and Yonekura '23
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DM Candidate: Baryonic Glueball in SO(2N)

Post-Confinement Entities: Confinement o
gives rise to both glueballs anad cosmic strings. ovaporaton | P2VOTe
"Baryonic Glueball" in SO(2N): In SO(2N)

gauge theory, the "pbaryonic gluepall” Is a

standout candidate for DM, thanks to Its long
Ifetime driven by an accidental symmetry in the
large N lImit.

1015 :_ LV (O3)

Explaining Dark Matter Abundance: This

model offers a potential explanation tor both |
the observed DM abundance and the signals oo
detected in PIA simultaneously! |

N MY and Yonekura '23
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In Conclusion: Key Insights

Formation of cosmic strings: Cosmic (super)strings emerge post-confinement in
pure Yang-Mills theory.

String characteristics: The string tension (u ~ A®), reconnection probability P ~ N2
and the dynamics of cosmic strings have been explored, extending the VOS model to
calculate the gravitational wave spectrum.

Baryonic glueballs for DM: In SO(2Z2N) gauge theory, baryonic glueballs have been
highlighted as a potential explanation for dark matter.

GW and DM from £ = éTr [F/JVFHV]
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