Probing heavy dark matter decays with multi-messenger astrophysical data

Koji Ishiwata

Kanazawa University

Based on JCAP 01 (2020) 003 with S. Ando, M. Arimoto, O. Macias

Osaka, November 26, 2020

<u>Outline</u>

- 1. Introduction
- 2. CRs from decaying heavy DM
- 3. Numerical results
- 4. Conclusion

1. Introduction

Evidences for dark matter (DM)

- Rotation curve of galaxies
- Bullet cluster
- Cosmic microwave background (CMB)

Corbelli, Salucci '00

Markevitch et al. '04 Clowe et al.'04

Planck '13

It is confirmed that the DM exists!

Evidences for dark matter (DM)

- Rotation curve of galaxies
- Bullet cluster
- Cosmic microwave background (CMB)

However, there's no candidate for DM in the standard model (SM) of particle physics

10,000 20,000 30,000 40,000 Distance (light years)

Corbelli, Salucci '00

/larkevitch et al. '04 Clowe et al.'04

Planck '13

- Electrically neutral
- Non-baryonic
- Stable or sufficiently long-lived
- Its energy density should agree with the CMB observations
- Non-relativistic

- Electrically neutral
- Non-baryonic
- Stable or sufficiently long-lived
- Its energy density should agree with the CMB observations
- Non-relativistic

How heavy?

A rough sketch of particle DM candidates

A rough sketch of particle DM candidates

How heavy?

 \longrightarrow

Almost unknown

- Electrically neutral
- Non-baryonic
- Stable or sufficiently long-lived
- Its energy density should agree with the CMB observations
- Non-relativistic

• Electrically neutral

- Non-baryonic
- Stable or sufficiently long-lived
- Its energy density should agree with the CMB observation
 Non-relativistic

• Electrically neutral

Non-baryonic

- Stable or sufficiently long-lived
- Its energy density should agree with the CMB observation
 Non-relativistic

Stable or unstable?

→ Unknown

Cosmic rays can be a probe for the questions

A rough sketch of particle DM candidates

e.g., tomographic cross-correlation using local galaxy distribution

Astro. BG can be reduced in z < 0.1

e.g., tomographic cross-correlation using local galaxy distribution

Decaying DM

Ando, KI '16

DM models to explain the anomalous positron flux are excluded

e.g., tomographic cross-correlation using local galaxy distribution

Past works on heavy decaying DM:

Esmaili, Ibarra, Peres '12 Murase, Beacom '12 Ahlers, Murase '14 Murase, Laha, Ando, Ahlers '15 Aloisio, Matarrese, Olinto '15 Kalashev, Kuznetsov '16 Cohen, Murase, Rodd, Safdi, Soreq '17 Kachelriess, Kalashev, Kuznetsov '18 Sui, Bhupal Dev '18

But no comprehensive analysis

In our study

We simulate cosmic-ray (CR) $p, \bar{p}, e^{\pm}, \gamma, \nu, \bar{\nu}$ from heavy decaying DM (10 TeV $\leq m_{dm} \leq 10^{16}$ GeV) in both

- Galactic
- Extragalactic

regions and discuss the detectability of the signals with multimessenger astrophysical data

List of the observations

CRs	Observations	Energy $[GeV]$	Detected	CL upper limits
Gamma (γ)	Fermi-LAT [30]	$10^{-1} - 10^3$	\checkmark	
	CASA-MIA $[36]$	$10^5 - 10^7$		90%
	KASCADE [35]	$10^5 - 10^7$		90%
	KASCADE-Grande [35]	$10^7 - 10^8$		90%
	PAO[40, 41]	$10^9 - 10^{10}$		95%
	$\mathrm{TA}\left[44 ight]$	$10^9 - 10^{11}$		95%
Proton (p)	PAO [47]	$10^9 - 10^{11}$	\checkmark	84%
Anti-proton (\bar{p})	PAO [47]	$10^9 - 10^{11}$	\checkmark	84%
	AMS-02[31]	$10^{-1} - 10^2$	\checkmark	
Positron (e^+)	AMS-02 [32]	$10^{-1} - 10^3$	\checkmark	
Neutrino (ν)	IceCube [45]	$10^5 - 10^8$	\checkmark	90%
	IceCube[46]	$10^6 - 10^{11}$		90%
	PAO [47]	$10^8 - 10^{11}$		90%
	ANITA [48]	$10^9 - 10^{12}$		90%

Plan to talk

- 1. Introduction
- 2. CRs from heavy decaying DM
- 3. Numerical results
- 4. Conclusion

2. CRs from heavy decaying DM

Particle productions from prompt decay

Propagations of CR particles

In the decay product of heavy DM ($m_{dm} \gtrsim 10 \text{ TeV}$), QCD and electroweak (EW) cascades happen

Birkel, Sarkar '98 Sarkar, Toldra '02 Berezinsky, Kachelriess '01 Aloisio, Berezinsky, Kachelriess '02 Barbot, Drees '02, '03 Bahr et al. '08 Bellm et al. '15

Fig. from Ciafaloni, Comelli, Riotto, Sala, Strumia, Urbano '11

You can "find" variety of particles in a single particle, which can be described by Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) Eqs.

If we consider multiple γ emission

Q evolution described by DGLAP Eqs.:

$$\frac{d}{d\log Q} \left(\begin{array}{c} D_e(x,Q) \\ D_\gamma(x,Q) \end{array} \right) = \frac{\alpha(Q)}{\pi} \left(\begin{array}{c} P_{ee}(x) & 2P_{e\gamma}(x) \\ P_{\gamma e}(x) & P_{\gamma\gamma}(x) \end{array} \right) \otimes \left(\begin{array}{c} D_e(x,Q) \\ D_\gamma(x,Q) \end{array} \right)$$

 $D_i(x,Q) : \text{fragmentation function (FF)}$ $P_{ij}(x) : \text{splitting function}$ $i, j = e, \gamma$ $f(x) \otimes g(x) \equiv \int_x^1 \frac{dy}{y} f(y) g(z/y)$

If we consider multiple γ emission

If we consider multiple γ emission

 Q^2 is, for example, momentum transfer in the scattering process

You can apply the DGLAP evolution to calculate DM decay

-> Large DM mass gives lots of γ

Large DM mass gives lots of γ

EW theory

In the present work, we focus on $b\bar{b}$ final state

1. Solve DGLAP Eqs. to derive the fragmentation functions of the hadrons h, D_h^h

$$h = \pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, \bar{K}^{0}, n, \bar{n}, p, \bar{p}$$

Kniehl, Kramer, Potter '00 Kretzer '00 Albino, Kniehl, Kramer '05 Hirai, Kumano, Nagai, Sudoh '07 Hirai, Kumano '12

2. Simulate the decays of the hadrons by Pythia to give the distributions of stable particles I, f_h^I

$$I = e^{\pm}, \gamma, p, \bar{p}, \nu, \bar{\nu}$$

$$\frac{dN_{I}}{dz} = 2\sum_{h} \int_{z}^{1} \frac{dy}{y} D_{b}^{h}(y, m_{dm}^{2}) f_{h}^{I}(z/y)$$
DGLAP Pythia

 $z = 2E_I/m_{\rm dm}$

Particle productions from prompt decay

Propagations of CR particles

Propagations of CR particles

Propagation of CRs in the Galaxy

Propagation of CRs in the Galaxy

The interactions of CRs in the extragalactic region

Heiter, Kuempel, Walz, Erdmann '17

Initial state	Target field	Process	Secondaries
Nuclei	CBR	Pair production (Bethe-Heitler)	e^{\pm}
Nuclei	CBR	Photo-pion production	p,n, u,e^{\pm},γ
Nuclei	CBR	Photodisintegration	$p, n, d, t, {}^{3}\mathrm{He}, \alpha, \gamma^{*}$
Nuclei	CBR	Elastic scattering*	γ
Nuclei	_	Nuclear decay	$p, n, \nu, e^{\pm}, \gamma^*$
Photons	CBR	Pair production [*] (Breit-Wheeler)	e^{\pm}
Photons	CBR	Double pair production [*]	e^{\pm}
Electrons	CBR	Triplet pair production [*]	e^{\pm}
Electrons	CBR	Inverse Compton scattering [*]	γ
Electrons	B-field	Synchrotron radiation*	γ

The interactions of CRs in the extragalactic region

Photo-hadronic

Heiter, Kuempel, Walz, Erdmann '17

Initial state	Target field	Process	Secondaries
Nuclei	CBR	Pair production (Bethe-Heitler)	e^{\pm}
Nuclei	CBR	Photo-pion production	$p, n, \nu, e^{\pm}, \gamma$
Nuclei	CBR	Photodisintegration	$p, n, d, t, {}^{3}\mathrm{He}, \alpha, \gamma^{*}$
Nuclei	CBR	Elastic scattering*	γ
Nuclei		Nuclear decay	$p, n, \nu, e^{\pm}, \gamma^*$
Photons	CBR	Pair production* (Breit-Wheeler)	e^{\pm}
Photons	CBR	Double pair production [*]	e^{\pm}
Electrons	CBR	Triplet pair production [*]	e^{\pm}
Electrons	CBR	Inverse Compton scattering [*]	γ
Electrons	B-field	Synchrotron radiation*	γ

EM cascades

Photo-hadronic processes

Photo-pion production

$$N + \gamma_{\rm BG} \rightarrow N + \pi$$

 $E_{\rm th} \sim 6.8 \times 10^{10} \,({\rm meV}/E_{\gamma_{\rm BG}}) \,{\rm GeV}$

• Pair production

$$^{A}_{Z}X + \gamma_{\mathrm{BG}} \rightarrow ^{A}_{Z}X + e^{+} + e^{-}$$

 $E_{\rm th} \sim 4.8 \times 10^8 \,({\rm meV}/E_{\gamma_{\rm BG}})\,{\rm GeV}$

$$x_{\rm loss}(E) = \frac{E}{dE/dx}$$

Stanev, Engel, Mücke, Protheroe, Rachen '00

Photo-hadronic processes

Stanev, Engel, Mücke, Protheroe, Rachen '00

The interactions of CRs in the extragalactic region

Heiter, Kuempel, Walz, Erdmann '17

Initial state	Target field	Process	Secondaries
Nuclei	CBR	Pair production (Bethe-Heitler)	e^{\pm}
Nuclei	CBR	Photo-pion production	$p, n, \nu, e^{\pm}, \gamma$
Nuclei	CBR	Photodisintegration	$p, n, d, t, {}^{3}\mathrm{He}, \alpha, \gamma^{*}$
Nuclei	CBR	Elastic scattering*	γ
Nuclei	_	Nuclear decay	$p, n, \nu, e^{\pm}, \gamma^*$
Photons	CBR	Pair production* (Breit-Wheeler)	e^{\pm}
Photons	CBR	Double pair production [*]	e^{\pm}
Electrons	CBR	Triplet pair production [*]	e^{\pm}
Electrons	CBR	Inverse Compton scattering [*]	γ
Electrons	B-field	Synchrotron radiation*	γ

EM cascades

EM cascades

- Pair production (PP) $\gamma + \gamma_{BG} \rightarrow e^+ + e^-$
- Double pair production (DPP) $\gamma + \gamma_{BG} \rightarrow e^+ + e^- + e^+ + e^-$

- Triple pair production (TPP) $e + \gamma_{BG} \rightarrow e + e^+ + e^-$
- Inverse Compton scattering (ICS) $e + \gamma_{BG} \rightarrow e + \gamma$

EM cascades

Heiter, Kuempel, Walz, Erdmann '17

EM cascades

Heiter, Kuempel, Walz, Erdmann '17

3. Numerical results

Extragalactic γ in $10^5 \,\text{GeV} \lesssim E_{\gamma} \lesssim 10^9 \,\text{GeV}$ is suppressed due to the pair production in the CMB

Lots of flux in TeV region due to the EM cascades

Galactic flux is dominant in high energy region for large *m*_{dm}

Integrated γ

Galactic flux is dominant in high energy region for large *m*_{dm}

$\nu + \bar{\nu}$ flux

$\nu + \bar{\nu}$ flux

Extragalactic flux is dominant

Constraints on DM lifetime (extragalactic)

Constraints on DM lifetime (extragalactic)

IceCube gives a more stringent bound in $10^6 \,\mathrm{GeV} \lesssim m_{\mathrm{dm}} \lesssim 10^{11} \,\mathrm{GeV}$

Fermi-LAT gives constrains in wide range of $m_{\rm dm}$

Constraints on DM lifetime (extragalactic)

Constraints on DM lifetime (Galactic)

Constraints on DM lifetime (Galactic)

Constraints on DM lifetime (Galactic)

Constraints on DM lifetime

Galactic γ & Extragalactic ν give the most stringent constraints

4. Conclusion

We have done a comprehensive analysis of CRs in heavy decaying DM model with multi-messenger astrophysical data i.e., $DM \rightarrow b\bar{b}$, $10 \text{ TeV} \le m_{dm} \le 10^{16} \text{ GeV}$

- p, \bar{p} , and e^+ give less stringent constraints
- Current γ and ν observations give the most stringent constraints

Backups

Galaxy distribution

2MRS '11

2MRS '11

We know the distance (or redshift) from each galaxy by its velocity

Redshift distribution

Anisotropy of gamma ray

Fermi-LAT '12

DATA (P6_V3 diffuse), 1.0-2.0 GeV

Fornasa, Sánchez-Conde '15

This should be explained by Blazers + SFGs + AGNs (+DM)

Fornasa, Sánchez-Conde '15

e.g., QED case

 χ : momentum fraction of γ in x^3 direction

e.g., QED case

(k^2 plays the role of momentum transfer)

x : momentum fraction of γ in x^3 direction

Energy distributions (results):

Energy distributions (results):

The interactions are characterized by the mean interaction length:

Szabo, Protheroe '94

$$\lambda^{-1}(E) = \frac{1}{8\beta E^2} \int_0^\infty \frac{d\epsilon}{\epsilon^2} \frac{dn(\epsilon)}{d\epsilon} \int_{s_{\rm th}}^{s_{\rm max}} ds(s-m^2)\sigma(s)$$
$$s = m^2 + 2E\epsilon(1-\beta\cos\theta)$$

$$= \int_{0}^{\infty} d\epsilon \frac{dn(\epsilon)}{d\epsilon} \frac{1}{2} \int_{-1}^{1} d\cos\theta (1 - \beta\cos\theta)\sigma(s)$$

cross section averaged over θ

Examples:

• Proton - CMB photon

Electron - CMB photon

 $T_0 \simeq 2.7 \,\mathrm{K}$

Absorption in ISRF+CMB

Esmaili, Serpico '15

Absorption in ISRF+CMB

\bar{p} flux in the Galaxy

 \rightarrow Constraints from AMS-02 becomes irrelevant for large $m_{\rm dm}$

e^+ flux in the Galaxy

Similar behavior to \bar{p} flux

 $p + \bar{p}$ flux

GZK effect can be seen in the extragalactic flux

 $p + \bar{p}$ flux

Galactic flux becomes dominant in the high energy region for large $m_{\rm dm}$

Combined results

