低温高密度におけるQCD型理論の現象 —中性子星内部の理解にむけた第一原理計算—

Refs:

(1) K.lida, El, T.-G. Lee: JHEP2001(2020)181

(2) K.lida, El, T.-G. Lee: arXiv:2008.06322

(3) T.Furusawa, Y.Tanizaki, El: PRResearch 2(2020)033253

Work in progress

低温高密度におけるQCD型理論の現象 —中性子星内部の理解にむけた第一原理計算— 2カラーQCDの低温高密度領域での相構造について

伊藤 悦子 (京都大学 基礎物理学研究所)

Refs:

(1) K.lida, El, T.-G. Lee: JHEP2001 (2020) 181

(2) K.lida, El, T.-G. Lee: arXiv:2008.06322

(3) T.Furusawa, Y.Tanizaki, El: PRResearch 2(2020)033253

Work in progress

加速器物理でわかることが一段落した今 素粒子分野で低温高密度QCDを考える時かもしれない

The Laser Interferometer Gravitational-Wave Observatory (LIGO)

NASA's Neutron star Interior Composition Explorer (*NICER*) 中性子星の表面付近から放出される soft X-raysを観測

Focus on *NICER* Constraints on the Dense Matter Equation of State Zaven Arzoumanian & Keith C. Gendreau (NASA Goddard Space Flight Center) December 2019

<u>_IGO</u> <u>NICER</u> 中性子星の観測実験

Cf.) 中性子星の冷却温度とダークマター/アクシオンの関係など

K.Hamaguchi, N. Nagata, K.Yanagi, J. Zheng, [arXiv:1806.07151] K.Yanagi, N. Nagata, K.Hamaguchi, [arXiv:1904.04667] K.Hamaguchi, N. Nagata, K. Yanagi, [arXiv:1905.02991]

QCDの理解の現状

少数核子系はクォークの理論(QCD)から格子計算で理解できるようになってきた。 多数の核子が詰まった媒質中の核子系は?

現実の物理系としては存在するのに、理論的には全くわかっていない…

LHCb, RHIC (中間密度, 高温) Neutron star (高密度, 低温)

「中性子星の中は どうなっているか」

<u>日経サイエンス2020年1月号</u>

中性子星の中ではフェルミ縮退圧を下げるため ボソンを作って凝縮している…?

● 温度密度相図

有限密度QCDの 何を知りたいか?

- インスタントン・カラーフラックスチューブの密度依存性
- ハドロン質量、核力の密度依存性
- 状態方程式
- 輸送係数

QCD phase diagram in Wikipedia

QCD phase diagram in Wikipedia

QCD phase diagram in Wikipedia

永田桂太郎:「有限密度格子QCDと符号問題の現状と課題」 <u>素粒子論研究Vol.31(2020) No.1</u>

有限密度QCDシミュレーションの2つの困難
(1) 符号問題 〈の〉=
$$\frac{1}{Z}\int DUD\psi Oe^{-S_g - \int \bar{\psi} D\psi} = \frac{1}{Z}\int DUO(\det D)^{N_f}e^{-S_g}$$

確率重みとするなら real-positive でないといけない

ゼロ密度 ($\mu = 0$), Dirac演算子は γ_5 エルミート($D^{\dagger} = \gamma_5 D \gamma_5$)なのでdet Dは「実数」

有限密度 ($\mu \neq 0$), Dirac演算子は $\Delta(-\mu)^{\dagger} = \gamma_5 \Delta(\mu) \gamma_5 \alpha$ のでdet $\Delta(\mu)$ は「(一般に)複素数」

2カラーQCDの場合は、SU(2)群の基本表現(=quark)が擬実表現のため det Δ(μ)は「実数」(正または負)

偶数フレーバーの2カラーQCDを考えると符号問題は現れない

(2) 計算不安定性問題(onset problem)

低温高密度でU(1)B対称性が自発的に破れた相転移付近で計算が進まなくなる カイラル摂動論から $\mu/m_{PS} \ge 1/2$ と予言されている. ここで m_{PS} は $\mu = 0$ でのpseudo-scalar (pion)の質量

U(1)B対称性を破る項(ダイクォーク源)を作用に入れて

その影響がゼロの極限を調べる

我々の戦略

(1) 2カラー2フレーバーQCDを考える
(2)フェルミオン作用にダイクォーク源をいれる
$$S_F^{cont.} = \int d^4 x \bar{\psi}(x) (\gamma_\mu D_\mu + m) \psi(x) + \mu \hat{N} - \frac{j}{2} (\bar{\psi}_1 K \bar{\psi}_2^T - \psi_2^T K \psi_1)$$
QCD Number op. diquark source
 $\hat{N} = \bar{\psi} \gamma_0 \psi$

Related works on Nc=2 with even # flavor

Kogut et al. NPB642 (2002)18, Alles et al. NPB752 (2006)124, Hands et al. NPB752 (2006) 124, PRD81 (2010) 091502,, EPJ. A47 (2011) 60, PRD87 (2013) 034507, Kotov et al. PRD94 (2016) 114510, JHEP 1803 (2018) 161

j->0極限とって相図や物理量を得る

2カラーQCD と 3カラーQCD

<u>(少なくともµ = 0で)定性的には同じ</u>

低温領域:

クォークの閉じ込め、

カイラル対称性の破れ(注: massless 2カラーQCDではU(1)Bが破れてカイラルが回復することが可能)

インスタントンの存在

ハドロンの質量スペクトルの順番

高温領域:

クォーク・グルオンが非閉じ込め

カイラル対称性の回復

状態方程式、輸送係数の温度依存性

<u>定量的にもそんなに違わない…?</u>

(例) pure SU(N) ゲージ理論の

 $\vdash \lor \neg \neg \neg \neg \neg \neg \neg \neg (\Delta = (\epsilon - 3p))$

(コメント) QCD phase diagramの両軸 : T とμ[MeV] 物理スケールはクォーク質量やフレーバー数に強く依存 ユニバーサルには 縦軸 : T/Tc 横軸 : μ/m_{PS} を使うと良い

T. Hirakida, El, H. Kouno, PTEP 2019 (2019) 033B01

Plan of talk

- 1. 2color QCD? 符号問題、on-set問題
- 2. 相の定義

Nc=Nf=2 QCDのフレーバー対称性とその破れ

シミュレーション結果
 T=0.39Tc, 0.79Tc での相構造
 トポロジカル感受率

4. まとめと展望

 $\mu = 0$ のとき、QCDは2つの相転移を起こす

- 閉じ込め (low T)/非閉じ込め(high T)
 (近似的) 秩序変数: Polyakov loop (Λ_{QCD})
- カイラル対称性の破れ (low T)/回復 (high T)
 (近似的) 秩序変数: カイラル凝縮 (Σ)

格子計算から現実のQCDでこの2つの 相転移はほぼ同じ温度(Tc)で起こる

diquark condensate plays an alternative role of

chiral condensate to study phase in finite μ regime.

2カラーQCDの相図の定義

	Hadronic	Hadronic QGP	Superfluid	
	T Idui Offic		BEC	BCS
$\langle L \rangle$	zero	non-zero		
$\langle qq \rangle$	zero	zero	non-zero	$\propto \Delta(\mu)\mu^2$
$\langle n_q \rangle$			non-zero	$n_q/n_q^{\rm tree} \approx 1$

Technical progresses in our work

diquark cond. with j=0.02, 0.03, 0.04

S.Cotter et al. Phys.Rev. **D87** (2013) 034507

j -> 0 extrapolation is a hard task

Reweighing of j-parameter

reweighing factor is almost unity,

 $(R_j - 1) \sim 10^{-3}$, in our calculations

Convergence of log-expansion is very well

Cf) B. B. Brandt, G. Endrodi and S. Schmalzbauer, Phys. Rev.D 97(2018) 05451

Plan of talk

- 1. 2color QCD? 符号問題、on-set問題
- 2. 相の定義

Nc=Nf=2 QCDのフレーバー対称性とその破れ

3. シミュレーション結果 T=0.39Tc, 0.79Tc での相構造 トポロジカル感受率

4. まとめと展望

L

Results

Lattice size: 16^4 : T=0.39Tc (~ 79MeV)

Phase diagram in j=0 limit

At T=0.39Tc, we find the BCS with confined phase until $\mu \lesssim 1152 MeV$.

It is consistent with the study of string tension, yesterday's talk by K.Ishiguro.

Cf.) At $T \simeq 0.25Tc$, there was a contradiction when our paper submitted on arXiv:

Confined/deconfined transition at $\mu \approx 800$ MeV by Wilson fermion was artifact (Hands et al, 2011, arXiv:1912.10975)

Cannot find the transition $\mu \leq 1410$ MeV by rooted staggered (Braguta et al, 2016)

quark number density

$$n_q = \sum_i \kappa \left\langle \bar{\psi}_i(x)(\gamma_0 - 1)e^{\mu}U_t(x)\psi_i(x+\hat{t}) + \bar{\psi}_i(x)(\gamma_0 + 1)e^{-\mu}U_t^{\dagger}(x-\hat{t})\psi_i(x-\hat{t}) \right\rangle$$

BEC-BCS crossover occurs at $\mu \approx 0.72 m_{\rm PS}$

quark number density

$$\langle n_q \rangle \neq 0, \ \langle qq \rangle = 0$$

クォークの自由度がノンゼロ 超流動性はなし

New! ≥相)

Hadronic-matter phase (共存相)

Hadronic matter phase

カイラル摂動論では n_q は $\mu = m_{PS}/2$ からノンゼロになる。 今のシミュレーションは低温だが僅かに温度がある

$$am_{PS} \simeq 0.6229$$

 $T = 1/(aN_{\tau}) = 1/(16a)$
 $T \simeq 0.1m_{PS}$

カイラル摂動論によるとダイクォークの質量は $m_{qq} \approx m_{PS} \mp 2\mu$.

 $\mu \sim 0.45 m_{PS}$ では $T \simeq m_{qq}$ となりダイクォークは熱的に励起され部分的にクォーク自由度が溶けてくるためクォーク数密度がノンゼロになったと考えられる

Summary of phase diagram at T=0.39Tc

Results

Lattice size: 32^3x8 : T=0.79Tc (~ 158MeV)

相図のまとめ

T=0.79Tc :158MeV, T=0.39Tc: 79MeV

Tcより低温でも密度領域では温度に依存した相構造がある QGP/SF 相転移はTcより下にある T~80MeVのような低温でも熱的励起でハドロニックマター相が出現

2カラーQCD相図の現状

(1) Swansea group : Wilson-Plaquette gauge + Wilson fermion

(2) Moscow group : tree level improved Symanzik gauge + rooted staggered fermion

(3) Our group : Iwasaki gauge + Wilson fermion, Tc=200 MeV to fix the scale

全てのグループのデータが上の図とほぼ無矛盾 (連続極限を取っていない・スケール設定がまだまだ不十分であるのにも関わらず)

トポロジカル感受率

Hadronic -> QGP

μ

Hadronic -> Hadronic-matter -> BEC-> BCS

先行研究

Hands et.al. (*arXiv:1104.0522*)

 $Nf=4, T=0 (12^{3}x24)$

Figure 2: The suppression of χ_T coinciding with the rise in $\langle L \rangle$ for $N_f = 4$. Note $\langle L \rangle$ has been rescaled for clarity.

Alles, D'elia, Lombardo (arXiv:0602022) Nf=8 staggered, finite T (14 ^ 3x6)

FIG. 2. Polyakov loop P as a function of $a\mu$. The logarithmic scale allows to disentangle the

data obtained in the vicinity of the transition point. Points are joined by a line to guide the eye.

トポロジカル感受率とポリヤコフループ

T=0.39Tc

Cf.) N. Astrakhantsev et al., arXiv:2007:07640 See a decreasing behavior of χ_Q in superfluid phase with deconfinement property

Summary of our work

非自明なトポロジカル背景場を持ったBCS相が存在する

質量ゼロの場合のanomaly matchingからの予言

T.Furusawa, Y.Tanizaki, El: PRResearch 2(2020)033253

Plan of talk

- 1. 2color QCD? 符号問題、on-set問題
- 2. 相の定義

Nc=Nf=2 QCDのフレーバー対称性とその破れ

シミュレーション結果 T=0.39Tc, 0.79Tc での相構造 トポロジカル感受率

4. まとめと展望

この研究のまとめ

- 2color-QCD phase diagram は第一原理計算で決まりつ つある
- 低温高密度領域にもインスタントン配位が存在する (解析的な摂動計算と異なる物理を示唆)

有限密度QCDの何を知りたいか?

- 温度密度相図
- インスタントン・カラーフラックスチューブの密度依存性
- ハドロン質量、核力の密度依存性
- 状態方程式
- 輸送係数

QCD不等式と最も軽いハドロン

Kogut et al, hep-ph/9906346

 $\mu = 0 のとき$

(1) $\gamma_5 D \gamma_5 = D^{\dagger}$

- (2) disconnected diagramがない
- この時 [∀]Γ mesonsに対してSchwartz不等式から

 $\mathsf{Tr}S(x,0)\Gamma S(0,x)\Gamma = \mathsf{Tr}S(x,0)\Gamma\gamma_5 S(x,0)^{\dagger}\gamma_5\Gamma \leq \mathsf{Tr}S(x,0)S(x,0)^{\dagger}.$

QCD不等式と最も軽いハドロン

 $\mu \neq 0 \mathcal{O}$ 時 $\gamma_5 D(\mu) \gamma_5 = D^{\dagger}(-\mu) \neq D^{\dagger}(\mu).$

普通の3カラーQCDでは正定値性も不等式もなくなる. (cf:カラーフレーバーロッキング相では $m_{\pi} > m_{n'}$? Son-Stepanov (1999))

2カラーQCDでは, $\gamma_5 C \tau_2 D(\mu) \gamma_5 C \tau_2 = D^*(\mu)$ の関係式. ここで $C = i \gamma_0 \gamma_2$. アイソスカラーダイクォーク(バリオン) $M_{qq} = \psi^T C \tau_2 \gamma_5 \psi$ が最も軽いと言える

I=1, $M_{\bar{q}q} = \bar{\psi}\gamma_5\psi$ (PS meson) I=1, $M_{\bar{q}q} = \bar{\psi}\gamma_1\psi$ (V meson)

(注意): 相関関数は τ -対称性を失い $C(\tau) = A_1 e^{-(m-2\mu)\tau} + A_2 e^{-(m+2\mu)(N_\tau - \tau)}$ でフィットする事で有効質量mを得る

(先行研究): メソンスペクトル

Muroya et al. Phys.Lett. **B551** (2003) 305

まとめ

- 2color-QCD の低温高密度領域の第一原理計算が進んでいる
- 超流動相でのハドロンの振舞いはハドロン相と全く異なる
- 中性子星と関連する物理に対して定性的・定量的に未知の
 現象がある事を示唆