From 3d dualities to hadron physics

Naoto Kan (Tokyo Tech)

Based on collaboration w/ Ryuichiro Kitano, Ryo Yokokura (KEK), Shimon Yankielowicz (Tel Aviv U) 1909.04082 [hep-th]

< **November 27, 2020 @**素粒子現象論研究会**2020 (**大阪市立大学**)** >

Introduction and Motivation

▶ Recently, there are exciting developments in **QCD3 and its dualities.**

[Aharony, Benini, Karch, Komargodski, Seiberg, Tong,…]

For example,

[Komargodski, Seiberg ('17)]

 $SU(N)_k$ with N_f fermions

$$
2|k| < N_f < N_*
$$

 $U(N_f/2 \pm k)_{\mp N}$ with N_f scalars

w/ some conditions

In the phase of QCD3 w/ small m_f , the flavor **sym is broken, which looks similar to QCD4.**

Moreover, the sym breaking is described by the Higgs phenomena in dual scalar theory.

w/ some conditions

In the phase of QCD3 w/ small m_f , the flavor **sym is broken, which looks similar to QCD4.**

Moreover, the sym breaking is described by the Higgs phenomena in dual scalar theory.

Dualities in 3d

[Komargodski, Seiberg ('17)]

$$
SU(N)_k \mathbf{w} / N_f \mathbf{\psi} \quad \boxed{2|k| < N_f < \mathcal{N}_*, N > 2}
$$

$$
m_{\psi} < 0
$$

 $U(N_f/2 - k)_{N}$ w/ $N_f \phi$ $U(N_f/2 + k)_{-N}$ w/ $N_f \phi$

 $U(N_f/2 - k)_{N}$ w/ $N_f \phi$ $U(N_f/2 + k)_{-N}$ w/ $N_f \phi$

 $U(N_f/2 - k)_{N}$ w/ $N_f \phi$ $U(N_f/2 + k)_{-N}$ w/ $N_f \phi$

In 3d, we can write the Chern-Simons term:

$$
S_{\rm CS} = \frac{k}{4\pi} \int d^3x \; \epsilon^{\mu\nu\rho} A_{\mu} \partial_{\nu} A_{\rho},
$$

where $k \in \mathbb{Z}$.

- ・**CS term is topological.**
- ・**CS term contributes to the statistical phase:**

$$
\bigodot_{\bullet} = \pm e^{i\pi/k} \bullet \bullet
$$

 $U(N_f/2 - k)$ ^{*N*} w/ $N_f \phi$

 $U(N_f/2 + k)_{-N}$ w/ $N_f \phi$

16

We add the explicit breaking terms

$$
\mathcal{L}_{\text{ex}} = -\bar{\psi}a_3\psi + \bar{\tilde{\psi}}a_3\tilde{\psi},
$$

to $SU(N)_0$ with (N_f+N_f) fermions.

The theory in the broken phase is described by $(U(N_f) \times U(N_f))/U(N_f)$.

We add the explicit breaking terms

$$
\mathcal{L}_{\text{ex}} = -\bar{\psi} a_3 \psi + \bar{\tilde{\psi}} a_3 \tilde{\psi},
$$

to $SU(N)_0$ with (N_f+N_f) fermions.

The theory in the broken phase is described by $(U(N_f) \times U(N_f))/U(N_f)$.

[NK, Kitano, Yankielowicz, Yokokura ('19)]

 $U(N_f)_{N}$ w/ $2N_f$ $\phi + \mathscr{L}'_{ex}$

 $U(N_f)$ _{−*N*} w/ 2*N_f* ϕ + \mathcal{L}' _{ex}

We start with QCD4 on $M_3 \times S^1$,

$$
S = \int_{M_3 \times S^1} \left[-\frac{1}{2g_4^2} \text{Tr} |f|^2 + \frac{\theta(x_3)}{8\pi^2} \text{Tr} (f^2) + i \sum_{i=1}^{N_f} \bar{\Psi}_i \, D_a \, \Psi_i \right],
$$

where the θ winds around S^1 ,

$$
\int_{S^1} d\theta = 2\pi k
$$

We start with QCD4 on $M_3 \times S^1$,

$$
S = \int_{M_3 \times S^1} \left[-\frac{1}{2g_4^2} \text{Tr} |f|^2 + \frac{\theta(x_3)}{8\pi^2} \text{Tr} (f^2) + i \sum_{i=1}^{N_f} \bar{\Psi}_i \, D_a \, \Psi_i \right],
$$

where the θ winds around S^1 ,

$$
\int_{S^1} d\theta = 2\pi k = 2\pi N_f.
$$

Effective theory for small and large radius

- For small radius, $\Lambda_4 R \ll 1$, we can perform **the KK decomposition.**
- **From the** *θ***-term, we find the CS term,**

$$
\frac{1}{8\pi^2} \int_{M_3 \times S^1} \theta \operatorname{Tr}(f f) = \frac{1}{8\pi^2} \int_{M_3 \times S^1} \operatorname{Tr} \left(a da + \frac{2}{3} a^3 \right) d\theta, \mod 2\pi.
$$

There is a mass gap, but the low energy limit is the CS theory, $SU(N)_{N_f}$.

For large radius, $\Lambda_4 R \gg 1$, the low effective **theory is given by**

$$
S_{\text{eff}} = \int_{M_3 \times S^1} d^4x \left[f_\pi^2 \text{Tr} \left| \partial_M U \right|^2 - \frac{m_\eta^2 f_\pi^2}{N_f} \left| \log(e^{-i\theta} \det U) \right|^2 + \cdots \right],
$$

where $U = \exp(i\pi^a T^a + i\eta)$.

The EoM for *η* **is**

$$
\frac{\partial^2}{\partial x_3^2} \eta = m_\eta^2 \left(\eta - \frac{\theta}{N_f} \right),
$$

$$
\eta(x_3+2\pi R)=\eta(x_3)+2\pi.
$$

Under the background where the η has **winding, the 4d WZW term which couple to the external gauge fields includes 3d WZ term,**

$$
S_{\text{WZW}} \supset -\frac{N}{8\pi^2} \int_{M_3 \times S^1} \text{Tr}\left(A dA + \frac{2}{3} A^3 \right) d\eta \,.
$$

The extension of the chiral Lagrangian to *U*(*Nf*) **gauge theory is known to give a great success to describe the phenomenology of the vector** mesons ρ and ω . *ρ ω* **[Bando, Kugo Uehara, Yamawaki, Yanagida ('85)]**

The extension of the chiral Lagrangian to *U*(*Nf*) **gauge theory is known to give a great success to describe the phenomenology of the vector** mesons ρ and ω . *ρ ω* **[Bando, Kugo Uehara, Yamawaki, Yanagida ('85)]**

natural candidates for *U*(*Nf*) **gauge boson**

A scenario of the dual theory

Close to critical radius, Λ4*R* ∼ 1,

mass spectrum *ρ* and *ω* massless pions and scalar mesons KK modes

Close to critical radius, Λ4*R* ∼ 1,

mass spectrum

ρ and *ω* KK modes

massless pions and scalar mesons

Form $U(N_f)$ gauge theory with $2N_{\!f}$ scalars

Holographic model

The quiver diagram of our model

 \blacktriangleright For $\langle H_{LR} \rangle \neq 0$, describing π 's and η .

 \blacktriangleright When $\langle H_{L,R}\rangle = 0$, the model becomes $U(N_f)_{-N}$.

Summary

- In QCD4 with winding θ , there is a phase **transition between the large and small radius.**
- We conjectured the dual $U(N_f)$ description near **the critical pt from 3d duality, and suggested the new picture of hadrons!!!**
- **We proposed the holographic model of the dual theory that realizes our picture.**

Conventions

- **Dynamical gauge fields are given by lowercase letters** a_μ, b_μ, \ldots ; A_μ, B_μ, \ldots represent non**dynamical fields.**
- **We represent the Lagrangian of QED with a CS term as**

$$
\mathcal{L} = -\frac{1}{4e^2} f_{\mu\nu} f^{\mu\nu} + i \bar{\psi} \gamma^{\mu} (\partial_{\mu} - i a_{\mu}) \psi - m \bar{\psi} \psi + \frac{k_{bare}}{4\pi} \epsilon^{\mu\nu\rho} a_{\mu} \partial_{\nu} a_{\rho}
$$

$$
\equiv i \bar{\psi} D_a \psi + \frac{k_{bare}}{4\pi} a da,
$$

where $k_{bare} \in \mathbb{Z}$.

- $\mathsf{When}~|m| \gg e^2$, we can integrate out a **fermion, and this shifts the bare CS level by .** sgn(*m*)/2
- **In addition, the theory is regularized to preserve gauge invariance with a Pauli-Villars regulator,** which shifts the bare CS level by $-1/2$.

\triangleright For this reason, we define the CS level k as

$$
k = k_{bare} - N_f/2,
$$

where N_f is the number of the fermions.

For example, QED with $k_{bare} = 0$

$$
\mathcal{L}=i\bar{\psi}D_{a}\psi
$$

 \mathbf{i} **s** expressed as $U(1)_{-1/2}$ + ψ .

When the fermions have masses and they are integrated out, the CS level in the low energy theory is

$$
k_{IR} = k + N_f \cdot \text{sgn}(m)/2.
$$

Our labeling of theories with non-Abelian gauge groups is analogous.