<u>Low scale seesaw models for low scale</u> <u>U(1)L μ -L τ symmetry</u>

Based on PRD91, 037301 and PRD93, 013014, PRD100, 095012. Collaboration with T. Araki, K.Asai, F. Kaneko, Y. Konishi, T. Ota, T. Shimomura.

MIND THE GA

\bullet Introduction

- IceCube Gap and U(1)L μ –L τ model PRD 91 & 93
- UV completion of U(1)L μ –L τ PRD 100
- •Summary

Introduction

Motivations of U(1) $L_{\mu - L \tau}$

New U(1) force acting on only μ and τ flavor leptons.

	е,	μ,	τ,	others
	${m u}_{ m e}$	\mathcal{V}_{μ}	$\mathcal{V}_{ au}$	
U(1) _{Lμ - Lτ}	0	+1	-1	0

Motivated by

Muon g-2 problem, Energy spectrum of cosmic neutrinos (IceCube), Flavor puzzles in the lepton sector, etc.

<u>Muon g-2</u>

Longstanding discrepancy between experiments and theory:

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = 26.1(8.0) \times 10^{-10}$$
[Hagiwara, Liao, Martin, Nomura, Teubner, JPG38, 085003 (2011)]
In the $U(1)_{L_{\mu}-L_{\tau}}$ model, we have an additional contribution:

$$a_{\mu}^{EXP} - \left(a_{\mu}^{SM} + a_{\mu}^{Z'}\right)$$

$$a_{\mu}^{Z'} = \frac{g_{Z'}^2}{8\pi^2} \int_0^1 \frac{2m_{\mu}^2 x^2(1-x)}{x^2 m_{\mu}^2 + (1-x)m_{Z'}^2} dx$$

$$\left(a_{\mu} = \frac{g_{\mu}-2}{2}\right) \qquad (g_{Z'} \ \bar{\mu}\gamma^{\rho}\mu Z_{\rho}')$$

The red band is consistent with g-2 withir 2σ

Motivations of U(1) $L_{\mu - L \tau}$

New U(1) force acting on only μ and τ flavor leptons.

	е,	μ,	τ,	others
	${ m u}_{ m e}$	${\cal V}_{\mu}$	${\cal V}_{- au}$	
U(1) _{L µ} -	0	+1	-1	0

Motivated by

Muon g-2 problem, Energy spectrum of cosmic neutrinos (IceCube), Flavor puzzles in the lepton sector, etc.

High energy cosmic neutrinos

<u>Our target:</u> neutrinos produced in cosmic-ray interactions with gas (p) or radiation (γ), followed by pion decays.

High energy cosmic neutrinos

Our target: neutrinos having energies of O(TeV - PeV) .

The IceCube Neutrino Observatory

Three-year data

Neutrino flux ($\nu + \bar{\nu}$) as a function of its energy.

The IceCube data have a great impact on

not only astrophysics

the origin of high energy cosmic neutrinos, an acceleration mechanism of cosmic rays

but also **particle physics**.

Gap or fluctuation?

Neutrino flux ($\nu + \bar{\nu}$) as a function of its energy.

- 1. It rejects a purely atmospheric explanation at 5.7 sigma.
- 2. The data are consistent with equal (1:1:1) flavor ratios and isotropic arrival directions.

The best-fit power low is

3.

 $\Phi(E) = \phi \left[\frac{E_{\nu}}{100 \text{TeV}} \right]$

Combined analysis:
[Astrophys. J. 809 (2015) 1, 98]

Gap or fluctuation?

Neutrino flux ($\nu + \bar{\nu}$) as a function of its energy.

Ioka, Murase, PTEP2014, 061E01Ng, Beacom, PRD90, 065035 (2014)Ng, Beacom, PRD90, 065035 (2014)Ibe, Kaneta, PRD90, 053011 (2014)The Gap may indicate Secret Neutrino Interaction (ν SI).

Rough estimation of the mass of X and its coupling.

л*г*?

 $m_{\mathrm{C}\nu\mathrm{B}} \simeq (0.01 - 0.1) \text{ eV}$ $E_{\nu} \simeq 1 \text{ PeV}$

(2) To attenuate sufficient amount of cosmic neutrino: $\sigma > 10^{-30} \text{ cm}^2$ $g > 10^{-4}$.

Explanation by $U(1)_{L_{\mu}-L_{\tau}}$.

<u>A new gauged U(1): mu – tau</u>

- 1. No quantum gauge anomalies.
- 2. No LFV couplings.
- 3. Large atm. and small reactor mixing: $\theta_{23} = 45^{\circ}, \ \theta_{13} = 0^{\circ}.$
- 4. A possible solution for muon anomalous magnetic moment.

Kinetic mixing is forbidden in $m_{\mu} = m_{\tau}$ limit

 $\mathcal{L}_{\mathrm{int}}$

$$=g_{Z'}(+\bar{\nu}_{\mu}\gamma^{\rho}P_{L}\nu_{\mu}-\bar{\nu}_{\tau}\gamma^{\rho}P_{L}\nu_{\tau}+\bar{\mu}\gamma^{\rho}\mu-\bar{\tau}\gamma^{\rho}\tau)Z'_{\rho}$$

In $m_{\mu} = m_{\tau}$ limit, we cannot distinguish between μ and τ . Then, a discrete symmetry appears.

$$\begin{pmatrix} \mu \longleftrightarrow \tau \\ B_{\rho} \longrightarrow B_{\rho} \\ Z'_{\rho} \longrightarrow -Z'_{\rho} \end{pmatrix}_{Z'_{\rho\sigma} = \partial_{\rho} Z'_{\sigma} - \partial_{\sigma} Z'_{\rho} }$$

Therefore, $-\frac{\epsilon}{4} Z'_{\rho\sigma} B^{\rho\sigma}$ is forbidden in $L_{\mu} - L_{\tau}$ model.

<u>A new gauged U(1): mu – tau</u>

- 1. No quantum gauge anomalies.
- 2. No LFV couplings.
- 3. Large atm. and small reactor mixing: $\theta_{23} = 45^{\circ}, \ \theta_{13} = 0^{\circ}.$
- 4. A possible solution for muon anomalous magnetic moment.

Muon g-2

The interaction between the electron/muon spin and magnetic field,

Magnetic moment,

The prediction of Dirac equation, $g=2\,$.

Due to the field theory, a small difference with Dirac value appers.

K. Hagiwara et al., J. Phys. G 38, 0850003 (2011). Marc Knecht, arXiv:1412.1228

<u>Muon g-2</u>

Longstanding discrepancy between experiments and theory:

$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = 26.1(8.0) \times 10^{-10}$$
[Hagiwara, Liao, Martin, Nomura, Teubner, JPG38, 085003 (2011)]
In the $U(1)_{L_{\mu}-L_{\tau}}$ model, we have an additional contribution:

$$a_{\mu}^{EXP} - \left(a_{\mu}^{SM} + a_{\mu}^{Z'}\right)$$

$$a_{\mu}^{Z'} = \frac{g_{Z'}^2}{8\pi^2} \int_0^1 \frac{2m_{\mu}^2 x^2(1-x)}{x^2 m_{\mu}^2 + (1-x)m_{Z'}^2} dx$$

$$\left(a_{\mu} = \frac{g_{\mu}-2}{2}\right) \qquad (g_{Z'} \ \bar{\mu}\gamma^{\rho}\mu Z_{\rho}')$$

The red band is consistent with g-2 within 2σ

Neutrino trident production

The model is constrained by the <u>neutrino trident production</u>.

Other constraints

 $\frac{Z' - \gamma \quad \text{one-loop mixing}}{\text{It contributes to} \quad \nu e \to \nu e :} \qquad \begin{array}{c} \nu_i \\ |\varepsilon_{\text{loop}}| = \frac{8}{3} \frac{eg_{Z'}}{(4\pi)^2} \ln \frac{m_{\tau}}{m_{\mu}} \\ \left(\mathcal{M}(\nu e \to \nu e) \propto \varepsilon_{\text{loop}} \frac{eg_{Z'}}{q^2 - M_{Z'}^2} \right). \qquad e^{-\frac{1}{2}} \end{array}$

The model is constrained by Borexino.

[Harnik, Kopp, Machado, JCAP 1207, 026 (2012)]

<u>BBN</u>

Such a lightZ' increases the effective numbe $N_{
m eff}$

[Kamada, Yu, 1594.00711]

 ν_j

Parameter region

Parameter region

 $m_{\mathrm{C}\nu\mathrm{B}} \simeq (0.01 - 0.1) \text{ eV}$ $E_{\nu} \simeq 1 \text{ PeV}$

(2) To attenuate sufficient amount of cosmic neutrino: $\sigma > 10^{-30} \text{ cm}^2$ $g > 10^{-4}$. <u>Calculation of neutrino flux</u> and model parameter

A propagation equation for cosmic neutrino:

$$\frac{\partial \tilde{n}_i}{\partial t} = \frac{\partial}{\partial E_i} b \tilde{n}_i + \mathcal{L}_i - c n_{\mathrm{C}\nu\mathrm{B}} \tilde{n}_i \sum_j \sigma(\nu_i \overline{\nu}_j^{\mathrm{C}\nu\mathrm{B}} \to \nu \overline{\nu}) \\ + c n_{\mathrm{C}\nu\mathrm{B}} \sum_{j,k} \int_{E_i}^{\infty} dE_k \tilde{n}_k \frac{d\sigma(\nu_k \overline{\nu}_j^{\mathrm{C}\nu\mathrm{B}} \to \nu_i \overline{\nu})}{dE_k}$$

$$\tilde{n}_i(E_i, z) = \frac{dn_i}{dE_i}$$

c: speed of light

z: redshift parameter

 $n_{\mathrm{C}\nu\mathrm{B}}$: number density of CnB

A propagation equation for cosmic neutrino:

$$\frac{\partial \tilde{n}_i}{\partial t} = \frac{\partial}{\partial E_i} b \tilde{n}_i + \mathcal{L}_i - c n_{\mathrm{C}\nu\mathrm{B}} \tilde{n}_i \sum_j \sigma(\nu_i \overline{\nu}_j^{\mathrm{C}\nu\mathrm{B}} \to \nu \overline{\nu}) + c n_{\mathrm{C}\nu\mathrm{B}} \sum_{j,k} \int_{E_i}^{\infty} dE_k \tilde{n}_k \frac{d\sigma(\nu_k \overline{\nu}_j^{\mathrm{C}\nu\mathrm{B}} \to \nu_i \overline{\nu})}{dE_k}$$

1. Energy loss via redshift

$$b = H(z)E$$

A propagation equation for cosmic neutrino:

$$\frac{\partial \tilde{n}_i}{\partial t} = \frac{\partial}{\partial E_i} b \tilde{n}_i + \mathcal{L}_i + c n_{\mathrm{C}\nu\mathrm{B}} \tilde{n}_i \sum_j \sigma(\nu_i \overline{\nu}_j^{\mathrm{C}\nu\mathrm{B}} \to \nu \overline{\nu}) \\ + c n_{\mathrm{C}\nu\mathrm{B}} \sum_{j,k} \int_{E_i}^{\infty} dE_k \tilde{n}_k \frac{d\sigma(\nu_k \overline{\nu}_j^{\mathrm{C}\nu\mathrm{B}} \to \nu_i \overline{\nu})}{dE_k}$$

2. Source term

$$\mathcal{L}_{i} = \mathcal{W}(z)\mathcal{L}_{0}(E_{i}) \qquad \qquad \mathcal{Q}_{0} : \text{normalization of flux} \\ \mathcal{L}_{0} = \mathcal{Q}_{0}E_{i}^{-s_{\nu}}\exp\left[\frac{E_{i}}{E_{\text{cut}}}\right] \qquad \qquad \mathcal{Q}_{0} : \text{normalization of flux} \\ S_{\nu} : \text{spectral index} \\ E_{\text{cut}} : \text{cut-off energy} \\ \end{array}$$
$$\mathcal{W}(z) = \begin{cases} (1+z)^{3.4} & 0 \le z < 1, \\ (1+z)^{-0.3} & 1 \le z \le 4. \end{cases} \qquad \qquad \text{Star formation rate} \end{cases}$$

A propagation equation for cosmic neutrino:

$$\frac{\partial \tilde{n}_i}{\partial t} = \frac{\partial}{\partial E_i} b \tilde{n}_i + \mathcal{L}_i + c n_{\mathrm{C}\nu\mathrm{B}} \tilde{n}_i \sum_j \sigma(\nu_i \overline{\nu}_j^{\mathrm{C}\nu\mathrm{B}} \to \nu \overline{\nu}) + c n_{\mathrm{C}\nu\mathrm{B}} \sum_{j,k} \int_{E_i}^{\infty} dE_k \tilde{n}_k \frac{d\sigma(\nu_k \overline{\nu}_j^{\mathrm{C}\nu\mathrm{B}} \to \nu_i \overline{\nu})}{dE_k}$$

3. Scattering with CnB

$$\begin{aligned} \sigma(\nu_i \bar{\nu}_j^{C\nu B} \to \nu \bar{\nu}) &= \frac{|g'_{ji}|^2 g_{Z'}^2}{6\pi} \frac{s}{(s - M_{Z'}^2)^2 + M_{Z'}^2 \Gamma_{Z'}^2} \\ \Gamma_{Z'} &= \frac{g_{Z'}^2 M_{Z'}}{12\pi} \frac{\sqrt{s} \ddagger \text{ center-of-mass energy}}{g'_{ij} = g_{Z'} U_{\text{MNS}}^{\dagger} \text{diag}(0, 1, -1) U_{\text{MNS}} \end{aligned}$$

A propagation equation for cosmic neutrino:

$$\frac{\partial \tilde{n}_i}{\partial t} = \frac{\partial}{\partial E_i} b \tilde{n}_i + \mathcal{L}_i - c n_{\mathrm{C}\nu\mathrm{B}} \tilde{n}_i \sum_j \sigma(\nu_i \overline{\nu}_j^{\mathrm{C}\nu\mathrm{B}} \to \nu \overline{\nu}) + c r_{\mathrm{C}\nu\mathrm{B}} \sum_{j,k} \int_{E_i}^{\infty} dE_k \tilde{n}_k \frac{d\sigma(\nu_k \overline{\nu}_j^{\mathrm{C}\nu\mathrm{B}} \to \nu_i \overline{\nu})}{dE_k}$$

4. Regeneration term

$$\frac{\mathrm{d}\sigma(\nu_k \bar{\nu}_j^{\mathrm{C}\nu\mathrm{B}} \to \nu_i \bar{\nu})}{\mathrm{d}E_{\nu_i}} = \frac{|g'_{jk}|^2 \sum_l |g'_{il}|^2}{2\pi} \frac{m_{\nu_j} E_{\nu_i}^2}{E_{\nu_k}^2} \times \frac{1}{(s - M_{Z'}^2)^2 + M_{Z'}^2 \Gamma_{Z'}^2}$$

Parameter setting

 $E_{\rm cut}$: cut-off energy

Neutrino mixing

Adjust to fit the IceCube data.

We calculate diffuse neutrino flux for several values of $M_{Z'}, \ g_{Z'}, \ m_{
m lightest}, \ S_{
u}$ for NH and IH.
Gap: Spectral index

Diffuse neutrino flux for several spectral indices.

The gap can **successfully be reproduced**, but not completely. Some events are expected in IceCube in the future. Indeed now appearing !

Gap: Source distribution

Diffuse neutrino flux for several types of source distribution.

Source distributions have a small impact on the flux.

Parameter region

Motivation

Extra U(1) models are often studied as an effective theory

•Really it exists ?

Including scalar potentials ? Say, extra matter(s) in low energy ?

Predictive or just parameter physics ?

For example,

In cosmic neutrino attenuation,

if there were more light particles , prediction would have differed, Neutrino masses and lepton mixings are predictive?

For latter zero texture is a key.

Zero textures

Zeros in neutrino mass matrix gives constraint = prediction

- One zero yields two conditions.
- •Zero textures
- $M_{\nu} = V \begin{pmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{pmatrix} V^T$ $V_{\text{MNS}} = U \cdot \begin{pmatrix} e^{i\alpha_1} & 0 & 0 \\ 0 & e^{i\alpha_2} & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $(M_{\nu})_{ab} = 0$ $(m_1 e^{2i\alpha_1})U_{a1}U_{b1} + (m_2 e^{2i\alpha_2})U_{a2}U_{b2} + (m_3)U_{a3}U_{b3} = 0$
- •Zero-minor textures

$$\frac{\text{Mass matrix in U(1)}_{L \mu - L \tau}}{U(1)_{L \mu - L \tau}} \text{ charges of a Majorana mass matrix.}$$
$$Q_{L_{\mu} - L_{\tau}}(M_{\text{Majorana}}) = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$

Thus, the mass

matrix is given by $M_{\text{Majorana}} = \begin{pmatrix} \times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0 \end{pmatrix} \underbrace{U(1)_{\text{L}\mu - 1}}_{\text{L}\mu - 1} M_{\text{Majorana}} = \begin{pmatrix} \times & 0 & \times \\ 0 & 0 & \times \\ \times & \times & 0 \end{pmatrix}$

Т

<u>Neutrino masses & mixing in U(1)</u> (Majorana) neutrino masses and mixing in U(1)_{L μ} - L τ . $M_{\ell} = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix} \qquad M_{\nu} = \begin{pmatrix} \times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0 \end{pmatrix}$ $m_2^{\text{exp.}} \neq m_3^{\text{exp.}}$ $m_2 = m_3$ $\theta_{12} = 0^{\circ}$ $\theta_{13} = 0^{\circ}$ $\theta_{13} = 45^{\circ}$ $\theta_{12}^{exp.} \simeq 33.8^{\circ}$ $\theta_{13}^{exp.} \simeq 8.5^{\circ}$ $\theta_{12}^{exp.} \simeq 8.5^{\circ}$ must broken. predictions $\theta_{23}^{\text{exp.}} \simeq 49.6^{\circ}$

From the first, though

the symmetry must be broken, since there is no massless gauge other than photon. How to break ?

Breaking of U(1) $L_{\mu - L \tau}$

 $U(1)_{L \mu - L \tau}$ symmetry must be broken in the neutrino sector. With $U(1)_{L \mu - L \tau}$ charge 1 scalars. With $U(1)_{L \mu - L \tau}$ charge 2 scalars.

Zero textures

Zero textures

One zero yields two conditions.

- •Zero textures $(M_{\nu})_{ab} = 0$ $(M_{\nu})_{ab} = 0$ $(m_{1}e^{2i\alpha_{1}})U_{a1}U_{b1} + (m_{2}e^{2i\alpha_{2}})U_{a2}U_{b2} + (m_{3})U_{a3}U_{b3} = 0$
- •Zero-minor textures

$$M_{\nu} = V \begin{pmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{pmatrix} V^T$$
$$V_{\rm MNS} = U \cdot \begin{pmatrix} e^{i\alpha_1} & 0 & 0 \\ 0 & e^{i\alpha_2} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Two-zero textures

Simple models give often two zeros

The number of parameters in two-zero textures.

One can predict 4 observables with 5 input parameters.

(ex.) $\sum m \quad \delta \quad \alpha_1 \quad \alpha_2 \qquad \Delta m_{12}^2 \quad \Delta m_{23}^2 \quad \theta_{12} \quad \theta_{13} \quad \theta_{23}$

Too predictive \cdots

Possible two-zero textures before Planck

•Two-zero textures

[S. Zhou, Chin. Phys. C40 (2016)]

$$M_{\nu} = \begin{pmatrix} \times & \times & \times \\ \times & 0 & \times \\ \times & \times & 0 \end{pmatrix} \qquad \begin{pmatrix} \times & \times & 0 \\ \times & 0 & \times \\ 0 & \times & \times \end{pmatrix} \qquad \begin{pmatrix} \times & 0 & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix} \qquad \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix} \qquad \begin{pmatrix} \times & \times & 0 \\ 0 & 0 & \times \\ 0 & \times & 0 \end{pmatrix}$$

• Two-zero-minor textures
$$(M_{\nu})^{-1} = \begin{pmatrix} \times & \times & \times \\ 0 & 0 & \times \\ \times & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} \times & \times & \times \\ 0 & \times & \times \\ \times & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} \times & \times & \times \\ 0 & \times & \times \\ \times & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} \times & \times & \times \\ 0 & \times & \times \\ 0 & \times & \times \end{pmatrix} \qquad \begin{pmatrix} \times & 0 & \times \\ 0 & \times & \times \\ 0 & \times & 0 \end{pmatrix}$$

$$\begin{pmatrix} & \times & 0 & 0 \\ & & 0 & \times \\ 0 & & \times & 0 \end{pmatrix} \qquad \begin{pmatrix} & \times & 0 & \times \\ 0 & & \times & \times \\ 0 & & \times & 0 \end{pmatrix} \qquad \begin{pmatrix} & \times & 0 & \times \\ 0 & & \times & 0 \\ & & & \times & 0 \end{pmatrix}$$

Checking the consistency of two-zero textures

<u>Two-zero textures vs Planck</u>

Input parameters; within 3 σ errors for NO(IO). $\sin^2 \theta_{12} = 0.275 - 0.350 \ (0.275 - 0.350),$ $\sin^2 \theta_{13} = 0.02045 - 0.02439 \ (0.02068 - 0.02463),$ $\Delta m_{31}^2/10^{-3} = 2.427 - 2.625 \ (\Delta m_{23}^2/10^{-3} = 2.412 - 2.611),$ $\Delta m_{21}^2/10^{-5} = 6.79 - 8.01 \ (6.79 - 8.01),$ $\delta = 125^\circ - 392^\circ \ (196^\circ - 360^\circ)$ [I. Esteban, et al, JHEPO1, 106 (2019).]

Two-zero textures vs Planck

[Planck Callaboration, arXiv1807.06209]

Two-zero-minors vs Planck

[Planck Callaboration, arXiv1807.06209]

New model

Our model

The 7 by 7 effective neutrino mass matrix is obtained, after the scalars develop VEVs.

Our model

$$m_{D} = \begin{pmatrix} m_{d}^{ee} & 0 \\ 0 & m_{d}^{\mu\mu} \\ 0 & 0 \end{pmatrix}, \qquad m_{N} = \begin{pmatrix} m_{n}^{ee} & 0 \\ 0 & 0 \\ 0 & m_{n}^{\tau\mu} \end{pmatrix}, \qquad m_{S} = \begin{pmatrix} m_{s}^{ee} & m_{s}^{e\mu} \\ m_{s}^{\mue} & m_{s}^{\mu\mu} \end{pmatrix},$$
$$m_{LL} = \begin{pmatrix} m_{L} & 0 \\ 0 & 0 \end{pmatrix}, \qquad m_{RR} = \begin{pmatrix} m_{R} & 0 \\ 0 & 0 \end{pmatrix}, \qquad \text{Model A}$$

$$m_{D} = \begin{pmatrix} m_{d}^{ee} & 0\\ 0 & 0\\ 0 & m_{d}^{\tau\tau} \end{pmatrix}, \qquad m_{N} = \begin{pmatrix} m_{n}^{ee} & 0\\ 0 & m_{n}^{\mu\tau}\\ 0 & 0 \end{pmatrix}, \qquad m_{S} = \begin{pmatrix} m_{s}^{ee} & m_{s}^{e\tau}\\ m_{s}^{\tau e} & m_{s}^{\tau\tau} \end{pmatrix},$$
$$m_{LL} = \begin{pmatrix} m_{L} & 0\\ 0 & 0 \end{pmatrix}, \qquad m_{RR} = \begin{pmatrix} m_{R} & 0\\ 0 & 0 \end{pmatrix}, \qquad \text{Model B}$$

The 7 by 7 effective neutrino mass matrix is obtained, after the scalars develop VEVs.

After block diagonalization, the active neutrino mass matrix is obtained.

$$M_{\nu} = -M_D (M_S^T)^{-1} M_N^T - M_N (M_S)^{-1} M_D^T \qquad \qquad \mathcal{O}_{(10^{-27}) \text{ GeV}}$$

Inverse
$$+M_D(M_S^T)^{-1}M_L(M_S)^{-1}M_D^T + M_N(M_S)^{-1}M_R(M_S^T)^{-1}M_N^T$$

Tiny neutrino masses can be realized. $M_N \sim \mathcal{O}(10^{-8}) \text{ GeV}$ $M_L \sim \mathcal{O}(10^{-7}) \text{ GeV}$ $M_D \sim \mathcal{O}(1) \text{ GeV}$ Small U(\mathcal{V}_L $M_\nu \sim \mathcal{O}(10^{-11} - 10^{-10}) \text{GeV}$

One-zero textures are obtains.

$$\text{Model - A:} \quad (\text{ N}_{\text{Re}}, \text{ N}_{\text{R}\mu}) = (0, 1) \quad (\text{ N}_{\text{Le}}, \text{ N}_{\text{L}\mu}) = (0, 1)$$

$$\text{Linear} \quad \text{Inverse}$$

$$M_{\nu} = \begin{pmatrix} \times & \times & \times \\ \times & 0 & \times \\ \times & \times & 0 \end{pmatrix} + \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & 0 \end{pmatrix}$$

$$\text{Model - B:} \quad (\text{ N}_{\text{Re}}, \text{ N}_{\text{R}\tau}) = (0, -1) \quad (\text{ N}_{\text{Le}}, \text{ N}_{\text{L}\tau}) = (0, -1)$$

$$M_{\nu} = \begin{pmatrix} \times & \times & \times \\ \times & 0 & \times \\ \times & \times & 0 \end{pmatrix} + \begin{pmatrix} \times & 0 & \times \\ 0 & 0 & 0 \\ \times & 0 & \times \end{pmatrix} = \begin{pmatrix} \times & \times & \times \\ \times & 0 \\ \times & \times & \times \end{pmatrix}$$

<u>One-zero textures</u>

The number of parameters in two-zero textures.

One can predict 2 observables with 7 input parameters.

$$\sum m < m_{ee} > \qquad \frac{\Delta m_{12}^2 \ \Delta m_{23}^2 \ \theta_{12} \ \theta_{13} \ \theta_{23}}{\delta \ \alpha_{1(2)}}$$

<u>One-zero textures</u>

Normal ordering (NO) is disfavored,

inverted ordering (IO) is allowed.

$KamLAND2\text{-}Zen \hspace{0.1in} \texttt{KamLAND} \rightarrow \texttt{KamLAND2}$

Neutrino 2018, Jun 2018

EXO-200 and nEXO - Gratta

20

Scalar potential

Light Scalar(s)? "Majoron" and ...

•Extension of SM with U(1)L μ –L τ gauge is very attractive.

•Not only g-2, here we show

•It explains the gap observed at IceCube around 500 TeV.

•We also construct a UV completion of such model which explains neutrino physics with predictions.

Three-years vs four-years

Event topology (flavors)

IceCube can distinguish flavors by observing event topology.

[K. Mase, KEK-PH2014]

Energy cut-off

Diffuse neutrino flux for several spectral indices.

Calculation of mean free path

(1) Positions of the gaps.

$$m_{Z'} \simeq \sqrt{2E_{\nu_i}^{\rm res}} m_{\rm C\nu B} \qquad \Longrightarrow \qquad E_{\nu_i}^{\rm res} = \begin{cases} \frac{1}{1+z} \frac{m_{Z'}^2}{2m_{\nu_{1(2)}}} \simeq 30 \text{ TeV}, \\ \frac{1}{1+z} \frac{m_{Z'}^2}{2m_{\nu_3}} \simeq 500 \text{ TeV}. \end{cases}$$

Calculation of mean free path

(2) Smaller CnuB mass \rightarrow Broader gap

$$M_{Z'}^2 \simeq 2E_{\rm res}(1+z) \left[\sqrt{|\mathbf{p}|^2 + m_{\rm C\nu B}^2} - |\mathbf{p}| \cos \theta \right]$$
Calculation of mean free path

Secret neutrino interaction

The gap may indicate *Secret Neutrino Interaction*.

A gap at a particular energy could be realized by a resonant interaction mediated by a new particle X [Ng, Beacom, PRD90, 065035 (2014)] [Ng, Kaneta, PRD90, 053011 (2014)]

$U(1)_{L \mu - L \tau}$ Breaking in Seesaw mechanisms

•A SM singlet scalar having U(1)_{L μ} -L τ charge 1 or -1. $M_D = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$ $M_R = \begin{pmatrix} \times & \times & \times \\ \times & \times & 0 \\ \times & \times & 0 \end{pmatrix}$ $M_\nu = \begin{pmatrix} \times & \times & \times \\ \times & \times & \times \\ \times & \times & \times \end{pmatrix}$ Two zero minors. $(M_\nu^{-1})_{\mu\mu} = (M_\nu^{-1})_{\tau\tau} = 0$

(ex.) Type-I seesaw

•An SU(2) doublet scalar having U(1)_{$L \mu - L \tau$} charge 1. $M_D = \begin{pmatrix} \times & \times & 0 \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix} \quad M_R = \begin{pmatrix} \times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0 \end{pmatrix} \quad \longrightarrow \quad M_\nu = \begin{pmatrix} \times & 0 & \times \\ 0 & 0 & \times \\ \times & \times & \times \end{pmatrix}$

•An SU(2) doublet scalar having U(1)_{$L\mu - L\tau$} charge -1.

	(×	0	×)		(×	0	0		$(\times$	X	0 \
$M_D =$	$\mathbf{\times}$	$\stackrel{\times}{0}$	$\begin{array}{c} 0 \\ \times \end{array}$	$M_R =$	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$	$0 \\ imes$	$\begin{pmatrix} \times \\ 0 \end{pmatrix}$	$M_{\nu} =$	\times 0	× ×	× 0 /

Two-zero textures are obtained.

(ex.) Inverse seesaw
•Without symmetry breaking.

$$M = \begin{pmatrix} 0 & M_D & 0 \\ M_D^T & 0 & M_S \\ 0 & M_S^T & M_L \end{pmatrix}$$

$$M_D = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix} \quad M_S = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix} \quad M_L = \begin{pmatrix} \times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0 \end{pmatrix}$$

$$M_\nu = -M_D (M_S^T)^{-1} M_L (M_S)^{-1} M_D^T = \begin{pmatrix} \times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0 \end{pmatrix}$$

(ex.) Inverse seesaw

•A SM singlet scalar having $U(1)_{L \mu - L \tau}$ charge 1.

	$' \times$	0	0		$(\times$	0	0		(\times)	\times	×	\			×	\times	\times
$M_D =$	0	×	0	$M_S =$	0	×	0	$M_L =$	×	0	\times			$M_{\nu} = $	×	0	×
- (0	0	×	/	0	0	×	2	×	×	0	/	_/		×	×	0
	•		,		•				`				V		`		

•An SU(2) doublet scalar having U(1)_{$L \mu - L \tau$} charge 1 or -1. $M_D = \begin{pmatrix} \times & 0 & \times \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$ $M_S = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$ $M_L = \begin{pmatrix} \times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0 \end{pmatrix}$ $M_\nu = \begin{pmatrix} \times & \times & 0 \\ \times & \times & \times \\ 0 & \times & 0 \end{pmatrix}$

$$M_D = \begin{pmatrix} 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix} \quad M_S = \begin{pmatrix} 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix} \quad M_L = \begin{pmatrix} 0 & 0 & \times \\ 0 & \times & 0 \end{pmatrix} \quad \bigwedge \quad M_\nu = \begin{pmatrix} 0 & 0 & \times \\ \times & \times & \times \end{pmatrix}$$

(ex.) Linear seesaw
•Without symmetry breaking.

$$M = \begin{pmatrix} 0 & M_D & M_N \\ M_D^T & 0 & M_S \\ M_N^T & M_S^T & 0 \end{pmatrix}$$

$$M_D = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix} \quad M_S = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix} \quad M_N = \begin{pmatrix} \times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0 \end{pmatrix}$$

$$M_V = -M_N(M_S)^{-1}M_D^T - M_D(M_S^T)^{-1}M_N^T = \begin{pmatrix} \times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0 \end{pmatrix}$$

(ex.) Linear seesaw

•An SU(2) doublet scalar having U(1)_{$L \mu - L \tau$} charge 1 or -1. $M_D = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$ $M_S = \begin{pmatrix} \times & \times & 0 \\ 0 & \times & 0 \\ \times & 0 & \times \end{pmatrix}$ $M_N = \begin{pmatrix} \times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0 \end{pmatrix}$ $M_\nu = \begin{pmatrix} \times & \times & 0 \\ 0 & \times & \times \\ 0 & \times & 0 \end{pmatrix}$ $M_D = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$ $M_S = \begin{pmatrix} \times & 0 & \times \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$ $M_N = \begin{pmatrix} \times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0 \end{pmatrix}$ $M_\nu = \begin{pmatrix} \times & 0 & \times \\ 0 & 0 & \times \\ \times & \times & \times \end{pmatrix}$

•Two SU(2) doublet scalar having U(1)_{L μ} -L τ charge 1, -1. $M_D = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$ $M_S = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$ $M_N = \begin{pmatrix} \times & \times & \times \\ \times & 0 & \times \\ \times & \times & 0 \end{pmatrix}$ $M_\nu = \begin{pmatrix} \times & \times & \times \\ \times & 0 & \times \\ \times & \times & 0 \end{pmatrix}$ $M_D = \begin{pmatrix} \times & \times & \times \\ \times & \times & 0 \\ \times & 0 & \times \end{pmatrix}$ $M_S = \begin{pmatrix} \times & 0 & 0 \\ 0 & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$ $M_N = \begin{pmatrix} \times & 0 & 0 \\ 0 & 0 & \times \\ 0 & \times & 0 \end{pmatrix}$ $M_\nu = \begin{pmatrix} \times & \times & \times \\ \times & 0 & \times \\ \times & \times & 0 \end{pmatrix}$

Two-zero textures vs Planck

Two-zero textures vs Planck

