Finite N superconformal index
ia the AdS/CFT correspondence via the AdS/CFT correspondence

East Asia Joint Symposium on Fields and Strings 2021 22-27 November 2021

> Y. Imamura Tokyo Institute of Technology

[Arai, YI, arXiv:1904.09776] [YI, arXiv:2108.12090]

AdS/CFT correspondence

[Maldacena, hep-th/9711200]

the spectrum.

Superconformal index Exinney, Maldacena, Minwalla, Raj
Cartan generators of [Kinney, Maldacena, Minwalla, Raju, hep-th/0510251]

 : Hamiltonian (Dilatation) J_1, J_2 : Angular momenta R_1, R_2, R_3 : R-charges acena, Minwalla, Raju, hep-th/0510251]

Cartan generators of PSU(2,2|4)
 $H:$ Hamiltonian (Dilatation)
 $J_1, J_2:$ Angular momenta
 $R_1, R_2, R_3:$ R-charges

$$
I(q, y, u_i) = \mathrm{Tr}_{S^3 \times R} \left[(-1)^F q^{H + \frac{J_1 + J_2}{2}} y^{J_1 - J_2} u_1^{R_1} u_2^{R_2} u_3^{R_3} \right]
$$

$$
(u_1 u_2 u_3 = 1)
$$

We can calculate this quantity on the gauge theory side for an arbitrary N by using localization formula.

Examples

(We turn off variables except for q (to save the space).)

$$
I_{U(1)} = 1 + 0q^{\frac{1}{2}} + 3q - 2q^{\frac{3}{2}} + 3q^2 + 0q^{\frac{5}{2}} + 0q^3 + 6q^{\frac{7}{2}} - 6q^4
$$

+ $0q^{\frac{9}{2}} + 12q^5 - 18q^{\frac{11}{2}} + 27q^6 - 12q^{\frac{13}{2}} - 27q^7$
+ $60q^{\frac{15}{2}} - 60q^8 + 24q^{\frac{17}{2}} + 76q^9 - 174q^{\frac{19}{2}} + 162q^{10}$
+ $0q^{\frac{21}{2}} - 240q^{11} + 432q^{\frac{23}{2}} - 348q^{12} - 144q^{\frac{25}{2}}$
+ $783q^{13}$...

$$
I_{U(\infty)} = 1 + 0q^{\frac{1}{2}} + 3q - 2q^{\frac{3}{2}} + 9q^2 - 6q^{\frac{5}{2}} + 21q^3 - 18q^{\frac{7}{2}} + 48q^4
$$

\n
$$
-42q^{\frac{9}{2}} + 99q^5 - 96q^{\frac{11}{2}} + 200q^6 - 198q^{\frac{13}{2}} + 381q^7
$$

\n
$$
-396q^{\frac{15}{2}} + 711q^8 - 750q^{\frac{17}{2}} + 1278q^9 - 1386q^{\frac{19}{2}} + 2256q^{10}
$$

\n
$$
-2472q^{\frac{21}{2}} + 3879q^{11} - 4320q^{\frac{23}{2}} + 6564q^{12} - 7362q^{\frac{25}{2}}
$$

\n
$$
+10890q^{13} \dots
$$

Large N

AdS *PAds*: Add radius $\frac{4}{2}$ L_{AdS} : AdS radius p l_p : Planck length $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ **ge N**
The parameter relation $N = \frac{L_{AdS}^4}{l_p^4}$ $\frac{l_{AdS}:\text{AdS radius}}{l_p:\text{Planck length}}$ l_p : Planck length

Large $N \leftrightarrow$ Classical analysis is justified.

 $I_{U(\infty)}$

Supergravity KK modes in S^5

[Kinney, Maldacena, Minwalla, Raju, hep-th/0510251]

Finite N

AdS $\qquad \qquad$ $\frac{4}{100}$ $p \sim$ $rac{1}{4}$ finite N \rightarrow quantum gravity l_p : Planck length
 T_{D3} : D3 tension $N = L_{AdS}^4 T_{D3}$ finite N \rightarrow Expare
 Interesting possibility

If a quantity is protected from quantum gravity correction, is

possible to reproduce the finite N correction to t Parameter relations $AdS^T D3$ innue is $\rightarrow 1$ ⁴ T_{eq} finite N \rightarrow $N = L_{AdS}^4 T_{D3}$ finite N \rightarrow Expanded D3-branes $\therefore N$

eter relations
 $_{AdS}$: AdS radius
 $N = \frac{L_{AdS}^4}{l_p^4}$ finite N \rightarrow l_p : Planck length (Giant gravitons)

Interesting possibility

If a quantity is protected from quantum gravity correction, it may be possible to reproduce the finite N correction to the quantity as D3-brane contributions.

Main claim [YI, arXiv:2108.12090]

Rigid branes (a toy model)

Rigid brane = D3 wrapped on a large S^3 in S^5

 $az_1 + bz_2 + cz_3 = 0$ $(a, b, c) \in \mathbb{C}\mathbb{P}^2$ $2 \left(\frac{1}{2} \right)$

A rigid $D3 = A$ point particle in $\mathbb{C}P^2$

Degenerate states in [N, 0] of $SU(3) \in SO(6)_R$

"Index" of a rigid D3

$$
I=q^N\chi_{[N,0]}(u)
$$

 q^N : the energy of D3 $\chi_{[N,0]}(u)$: SU(3) character

$$
\chi_{[N,0]}(u) = \sum_{k_1 + k_2 + k_3 = N} u_1^{k_1} u_2^{k_2} u_3^{k_3}
$$

$$
\chi_{[0,0]} = 1
$$

\n
$$
\chi_{[1,0]} = u_1 + u_2 + u_3
$$

\n
$$
\chi_{[2,0]} = u_1^2 + u_2^2 + u_3^2 + u_1 u_2 + u_2 u_3 + u_3 u_1
$$

\n
$$
\vdots
$$

Decomposition to harmonic oscillators

$$
\text{composition to harmonic oscillators} \\ q^{N} \chi_{[N,0]} = \frac{(qu_1)^N}{\left(1 - \frac{u_2}{u_1}\right)\left(1 - \frac{u_3}{u_1}\right)} + \frac{(qu_2)^N}{\left(1 - \frac{u_3}{u_2}\right)\left(1 - \frac{u_1}{u_2}\right)} + \frac{(qu_3)^N}{\left(1 - \frac{u_1}{u_3}\right)\left(1 - \frac{u_2}{u_3}\right)}
$$
\n
$$
z_1 = 0
$$
\n
$$
z_2 = 0
$$
\n
$$
z_3 = 0
$$

 $(i)^N$: classical energy and charges of a brane wrapped around a large circle $\frac{1}{\sqrt{2}}$ $\left(1-\frac{u_{i+1}}{u_{i+1}}\right)\left(1-\frac{u_{i-1}}{u_{i+1}}\right)$. HallHollie Os u_i $\left|\right|$ u_i $\left|\right|$ $\left(1-\frac{u_{i-1}}{u_{i-1}}\right)$. Harmonic oscinators u_i) : harmonic oscillators of two rigid motions

Completion

↑obtained from the mode expansion of

This is the index of the U(1) gauge theory on a wrapped D3.

We also define F_1 and F_2 in the same way.

$$
I_{\text{single}} = I_{\text{SUGRA}} \times (F_1 + F_2 + F_3)
$$

Numerical check

We want to get

$$
I_{U(1)} = 1 + 0q^{\frac{1}{2}} + 3q - 2q^{\frac{3}{2}} + 3q^2 + 0q^{\frac{5}{2}} + 0q^3 + 6q^{\frac{7}{2}} - 6q^4
$$

+0q^{\frac{9}{2}} + 12q^5 - 18q^{\frac{11}{2}} + 27q^6 - 12q^{\frac{13}{2}} - 27q^7 + \cdots

SUGRA gives

$$
I_{\text{SUGRA}} = 1 + 0q^{\frac{1}{2}} + 3q - 2q^{\frac{3}{2}} + 9q^2 - 6q^{\frac{5}{2}} + 21q^3 - 18q^{\frac{7}{2}} + 48q^4
$$

-42q² + 99q⁵ - 96q¹¹ / 200q⁶ - 198q¹³ / 381q⁷ + ...

Inclusion of I_{single} [Arai, YI, arXiv:1904.09776]

$$
I_{\text{SUGRA}} + I_{\text{single}} = 1 + 0q^{\frac{1}{2}} + 3q - 2q^{\frac{3}{2}} + 3q^2 + 0q^{\frac{5}{2}} + 0q^3 + 6q^{\frac{7}{2}} - 6q^4
$$

+0q^{\frac{9}{2}} + 12q^5 - 18q^{\frac{11}{2}} - 85q^6 + 504 q^{\frac{13}{2}} - 1896q^7 + \cdots

This is encouraging, but still we have mismatch.

Let us include the contribution from multiple-wrapping contributions.

 $U(n_1) \times U(n_2) \times U(n_3)$ quiver gauge theory is realized on the brane system

Proposal

The index is given by the following formula. [YI, arXiv:2108.12090]

$$
I_{U(N)} = I_{\text{SUGRA}} \sum_{n_1, n_2, n_3=0}^{\infty} q^{(n_1 + n_2 + n_3)N} u_1^{n_1 N} u_2^{n_2 N} u_3^{n_3 N} F_{n_1, n_2, n_3}
$$

 g_{n_1,n_2,n_3} : index of the quiver gauge theory on the D3-branes (*N*-indep)

 I_{single} : (1,0,0), (0,1,0), (0,0,1) I_{double} : (2,0,0), (0,2,0), (0,0,2), (1,1,0), (1,0,1), (0,1,1) I_{triple} : (3,0,0),(0,3,0),(0,0,3),(2,1,0),(1,2,0),(0,2,1),(0,1,2),(2,0,1),(1,0,2),(1,1,1) \sim 100 \pm

Numerical check

Numerical check

Inclusion of multiple-wrapping contributions gives (for $N = 1$)

$$
I_{\text{SUBRA}} + I_{\text{single}} + I_{\text{triple}} + \cdots
$$
\n
$$
= 1 + 0q^{\frac{1}{2}} + 3q - 2q^{\frac{3}{2}} + 3q^2 + 0q^{\frac{5}{2}} + 0q^3 + 6q^{\frac{7}{2}} - 6q^4
$$
\n
$$
+ 0q^{\frac{9}{2}} + 12q^5 - 18q^{\frac{11}{2}} + 27q^6 - 12q^{\frac{13}{2}} - 27q^7
$$
\n
$$
+ 60q^{\frac{15}{2}} - 60q^8 + 24q^{\frac{17}{2}} + 76q^9 - 174q^{\frac{19}{2}} + 162q^{10}
$$
\n
$$
+ 0q^{\frac{21}{2}} - 240q^{11} + 432q^{\frac{23}{2}} - 348q^{12} - 144q^{\frac{25}{2}}
$$
\n
$$
+ 783q^{13} \dots = I_{U(1)}
$$

By summing up contributions up to $n_1 + n_2 + n_3 \leq 3$ we found complete agreement up to q^{13} for $N = 1$. [YI, arXiv:2108.12090]

Summary

-
- We proposed a new method to calculate the index of N=4 SYM on the AdS side.
• Although we have no proof at present, numerical analysis showed it reproduces the • Although we have no proof at present, numerical analysis showed it reproduces the correct answer.
- The method has been applied to many examples of AdS/CFT correspondence, and works well.

Application to other systems

As far as we have checked the formula reproduces finite N index correctly!

Thank you