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WCCC for extremal BH of Higher Derivative Theories
WCCC for near-extremal BH of HDTs

Violation of WCCC and Consistent Check
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In general relativity, a singularity at which the spacetime ends is inevitable.
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The physical nature of the singularity is unknown.

Penrose conjectured the cosmic censorship to require no acausal or indeterministic effect
caused by the singularity.



Weak and Strong Cosmic Censorship

Two versions of Cosmic Censorship

Mathematically, cosmic censorship requires
the Cauchy development (grey) is globally hyperbolic.

Weak versions

All singularity should be hidden by the event horizons ( ),
which are stable. l.e., no naked singularity.

A Black Hole's Other Horizon

Past the event horizon — a black hole’s point of no return — lies the Cauchy
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Wald’s Gedanken Experiment

Wald (1974) gave the operational statement of WCCC
by following gedanken experiment

Throw the matter into (near-)extremal BH, then
WCCC holds if energy condition holds.

m=Ey=Ey=—(mu-&+qA-&)|,>—qA-&

energy conservation energy condition
For extremal RN BH, the electromagnetic potential on the horizon ®,; = —A - £ =1,

S.m2>q. Thus, M4+m > Q0 +gq.



 Motion of the matter causes metric perturbation, which acts on the matter as self-
force, and further induces radiation-reaction effect.

 The self-force is 2nd order effect, and will not affect the earlier analysis for
extremal BH but the near-extremal BH.

e Hubeny 1999 A near extremal BH with ¢ = \/ 1 — Q?/M?* < 1 with

0,2 0

— ~ 1 —e. Energy conservation and energy condition give m > (1 — €)qg .
r. M +e€)

e M4+m—(Q+q)~—eq+ Me?*/2. It seems that WCCC can be violated by taking g > Me/2.
This is not true because it neglects the self-force effect at O(g?) .



Sorce & Wald develop a proof/check of WCCC by throwing generic
matter into a (near-)extremal BH in Wald’s gedanken experiment.

The proof/check is based on the energetic constraint without explicitly
solving the real dynamics involving 2nd order self-force.

The energetic constraint is derived from the lyer-Wald formulation defining
the covariant Noether charge & black hole mechanics/thermodynamics.

Sorce & Wald use their formalism to prove WCCC for (near-)extremal BH
of Einstein-Maxwell theory. We use this formalism to check WCCC for
their higher derivative extensions.



lyer-Wald formulation : covariant formulation of BH mechanics

Ol = E(¢) + d@(¢, 5¢), ¢ =(g,,A,), L =Lagrangian4-form, E =EoM, O = symplectic 3-form

Define Noether current given a vector &#: J. = O(¢p, L p) — i-L. ltiseasytoseed/. =0
c & S S

so that J: = dQ; + ¢"'C,, with (C)),5, = €,,3 (T, + ] A, where T, = (EoM)*, JF = (EoM)" .

oJ: = diO(, o) it £ p = 0. Together with 6J. = doQ; + £*0C , this lead to the linear
energetic constraint for BH when throwing into BH the matter obeying null energy condition:

oM — ® 00 = — J €,3 60T, = 4[ e3 ol ,n*n” > 0.
Y 4 H

Cf. 6C, = e,5(6T" +A5"), M = J [6Q; — i:0(¢, 5)], 60 = J% €3 0, Dy=—E"A .
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Sorce-Wald 2017

A second variation of the linear energetic constraint gives the 2nd order energetic constraint:

5°M — @,,6°0 = E(¢p, ) — [ €3 EV6°T i & (¢, 5)
H

null energy condition

c.f. Wald’s canonical energy &x(@, 0¢) = J' (P, 0, Lep) = Ex + Ex
S=%+%,

with  @(¢, 5,¢, 5,¢p) = 6,0(¢, 6,¢) — 5,0(¢h, 5,¢)

& o ~ energy flux of gravitational & electromagnetic waves into BH > 0 (??).

Assume 5¢p | = 5pP st. 6°M = 6°Q =6°C, =0 and &y (¢, 6¢"") = Ex(h, 6¢"") = — T;,6°Spy -
Thus, 2nd order energetic constraint takes the form of generalized 2nd law:

5ZSBH + T—(52M — CI)H52Q) > (0 atleast for collapsing spherical-shell of matter.
H
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Short Summary of Overcharging a BH

Variate the extremality condition to obtain WCCC condition,
e.q., linear order WCCC condition for Einstein-Maxwell theory: 6M > 60.

To overcharge an extremal BH

Check the compatibility between WCCC condition and linear energetic constraint
oM — .60 > 0. E.g, for Einstein-Maxwell theory, the WCCC holds trivially.

To overcharge a near-extremal BH

Assume the linear energetic constraint is saturated, i.e.,, , and use it and the 2nd order energetic
constraint *M — ®,,6°Q > — T,6°Sgy, to check if the 2nd order WCCC condition holds.
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* The higher derivative extension of Einstein-Maxwell theory is inevitable by
due to the loop correction of scalar and fermions, e.g., at 1-loop
Lypinor < SRF?* — 26R,,,F*’F” , + 2R,  F*" F* ,

5
Lycatar —ERFz — 2R, F*F”, — 2R ., F* FF |

* In this work, we will consider the following HDTs: [ = fd"'x \/—g(ziR — Al—lF,,VF‘“’ + AL),
K

AL = c¢R* + coR,R" + 3R ,,,,c R*P”

+ C4kRF ,, F*" + ¢skR,,FFF” ), + CokR,, o F*7 FFP7

+ 1K Fyy F* F oo FP” + c3k°F P F ,, F" .

* These theories can be tested by high energy experiments or gravitational
wave observations.
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B H S Of H DTS Kats et al 2006

BH configuration
23 10
A; = 8 ol ¢y +4c3 + 10cq4 + ¢c5 — cek |9 et O 16¢c7 — 8cg | + O(ciz)
r 51 g
2 3.2 34 2 3. 2 3 4 2 0 3.2 3 4 2 2
., km kg~ K’mg®  K’qt  2Kk°q 4k’mqg” 4k°q  8k“q 6k°’mqg” 4k’q” 4dk‘q
N r +2r2+62( r 5r0 r )+CB( r 5r° r )+C4( . )
3Cm q2 443 q4 K3mq2 K q4 2 k2 q2 453 q4 23 q4 X
+c5( 3 + 55 )+c6( S 5,6 r4 )+c7( o )+c8( - )+O(ci).
extreamlity = double root of g,,
2 4
m > \Elq\(l—ﬁm) co =Cy +4c3 + c5+ cg + 4c7 + 2cy

Weak Gra vity Conject Ure requiresml|q| < 1, i.e, ¢y > 0 so that the number of stable particles is finite.
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WCCC for extremal BH

Variate the extremality condition gives
2 4c 2 4
5MZ\/;<1 | 5q2)561 — m > \/;\61\(1— gco)

Walad's Energetic constraint

. 2 4c,
om > ®yog with ©,;=—-¢-Al,, = _<1+_>

c.f. 6m & 6q receive no correction
from the higher derivative terms

mmell-  |\//CCC holds for extremal BH!
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WCCC for extremal BH

WCCC = Non-decreasing A, or Spy

(1) Assume F(m, q, AH) = 0. Then, WCCC 5AH =0 Imp/IeS | Naked Singularity region
0 F
q .

Sm = ( )5
OmFSq

(2) the extremality condition o,F(,mq,Ay) = 0 implies
0 F om

(), =~ ()
de S dq ext

_ om
(1)+(2) gives om = <—) 0
ext

Q

extremal line. A. = A_

"""" A_. contours

First Law

. 0
{q 7 ext

----- A_ contours

Thus, WCCC requires 5m = ®,,5q, which holds by Wald's .

: : : . Extremality contour & constant area contours
linear energetic constraint for any gravity theory.



Wald Entropy for HDTs

0L 1
Spy = — 27mAy €€ — — 27Ay [ 4c\R — 4c,R"™ + 8c3R™ + 2k (2¢4 + €5 + 2¢6)FF ”"]
K

UV PO
OR s

g,uwA,er g/,twA,u’rH

RHS of 2nd order energetic constraint

1 4
Tud*Spy = ———|(1-2€)(6m — 5g)* — 3€*(m — 69)dq + €' (26m — 359)5q | + 2 |€(14 - 74€ + 217€%)(6q)°
€Zm 5¢*m?3
/ +(2 — 32€ + 139€* — 360€°)5g6m + 2(1 — 9€ + 32¢* — 7263)(5m)2)] +O(c3, ¢4, ,C8)
seemingly singular

Apply linear energetic constraint

4
(co(l + 2¢) + 10c6€) 0q

om= |(l—¢€)+
2

1[. 16 ‘
Tud*S gy = —— |1 - 5(2c0 + 5¢) 69)° .
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WCCC constraint

2nd order energetic constraint

Wald Ent 4c | 16
6°m — ®,6%q > — Ty0>Spy bbbt > 8'm > [1 + —O] 6°g+—|1 (2¢ + 5¢6) | (Bg)
opetimal linear energetics Sm? m Sm?
Extremality condition
2 2 Ao\’ ? A%
Expand f(A) = m~(1) — g (/1)<1 ) up to znd order by m(A) = m+ Adom+—o6m & q(A) = g+ 16g + —d67q
5g%(A) 2 2
2nd order energetic constraint
f(l) = (em— /16q)2 + %(em — A&q)(co(em + 346q) + 10c6/15q) :

co =cCy+4cs + c5+ cg + 4c7 + 2cg
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WCCC constraint

f() = (em— A6g)* + (em — /léq)(co(em + 316q) + 10c6/16q) . co = a2 +4c3+cs+ce+4c7 + 2y

Sm?

Note 1: No 6%m and 52q appears. The leading complete-square term is the one of Einstein-Maxwell theory as expected.
Note 2: WCCC is always preserved if ¢, = ¢, = 0. This is different from the constraint ¢, > 0 by weak gravity conjecture.

Note 3: No clue why ¢, is exceptional.

d
ASSUME ) ~ ¢ < c.<land 16g 2 em >0 st |em— Adq| ~ —L « 1 for some d, > 0. Then,

m
d? 6 . . d,
f) ~ — (1 e(2cy + 5c6)> so that WCCC can be violated if e(2cy + 5¢¢) > T
m

1
This can be achieved easily.
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According to WCCC constraint WCCC is preserved for Einstein-Gauss-Bonnet (EGB) gravity,
|

L8, c| =C3 = — e = cp IS black hole solution is just the same as Einstein-Maxwell

In this case, the junction condition is of first order and we can consider a spherical thin-shell for a consistent
check of the WCCC constraint

Thin-shell junction condition for EGB metric ds? = - f(r)dr? - ]fi”j |

. 1
K| =S, with 1, = QKKK + KKK, — 2K, KK, ~ KK,,) # 0

and P, , =R, ,+2R, hy, — 2R, + R, +h,h, R where the hatted is evaluated w.rt induced metric h,,

r2dQ

A\

Ky, — h, K +2c6p(3],, — hJ +2

Straightforwardly to find IA’W 2 = 3, —h,J =0 so that the junction condition reduces to the Einstein-Maxwell one.

, i 1 —22=+ q—f 2
Floating Thin- Shell choose the metric on either sides to be f.(r) = - ;‘; f)=1-2"%1 q—; for the
-2t 4+ 2 rer

metric to be continuous at the junctionr =r,

r.— m, \2
Assume the thin-shell matter is pressure-less, then the junction condition gives m? — q* = < - i ) (m? — g°).
r.—m

This is consistent with WCCC. 13



WCCC for BTZ BH of 3D Gravity

We also check WCCC for the BTZ BH of 3D gravity theories for which the null energy condition is well-defineq,
(@) 3D Einstein gravity: (b) 3D chiral gravity which is of higher derivative. Both are torsion free.
Apply Sorce-Wald, and we find that WCCC holds for both cases.

M= (vV=R)J 1&252

Optimal linear energetics implies 05 = 0.

(5-(,‘) = U
6 =0

r=Q

M

Naked Conical Singularity

1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1

0 1 2 3 4 5

V—=AJ

3D Einstein gravity 3D chiral gravity
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Cosmic censorship is a fundamental issue in general relativity
We find that WCCC holds for extremal black holes in generic theories of gravity.

However, we find some evidence that WCCC can be violated for some higher
derivative extension of Einstein gravity.

Despite that a direct example of WCCC violation is wanted.

Our constraint can be relevant for UV completion as the one derived from weak
gravity conjecture.
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Supplement |

3D Mielke-Baekler gravity with torsion: Mielke-Baekler 1991

L = Lgec + LA + Les + L + Lm,

1 d
LEC — — € /\Ra,

s

A a b C
Ly, = Gﬂeabce N\ e /\e,k
1

Lcs = —6, (wa A dw,y; + gﬁabcwa A WP A wc> ,

Or
LT — 271-26 /\Ta,

. - . —_— 2
Three well-defined limits: (on-shell T, oc 7= = E2T AL

» Einstein gravity: 6. > 0, 6+ — 0
» Chiral gravity: torsionless, set 7 = 0 then take 6, — —1/(27v—A)

» Torsional chiral gravity: take 8. — — 1/(2m+/—A ) first, then obtain

T — m/—A /2 hence torsion not vanishing
2




Supplement

B1Z solutions in Mielke-Baekler gravity: Hehl et a/ 2003

dreibeins: .
0 _ SR 2 _ b
e’ = Ndt, e = N’ ¢ r(d¢+N dt) :

J? J T2+ R
2/ N A gy = bl _
N“(r) = —M— Aegrr© + 12 N?(r) = = Aesf = >
dual spin connections:
w? = @ 4 7—e"
- )
~0 _ ~1 N¢ ~2 &
w’ = Ndo¢, W = N dr, W = —Aegrrdt + rN9do,
B T4 4+ R B 9? + w2 A
(Ae“ - 2 . 1 + 29-,9L)

In torsion free limit 7 — 0, recover BTZ in Einstein and TMG with Ag = A.
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