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Local operators in AdS/CFT

Local BPS operators play important roles in the study of SCFT
and AdS/CFT correspondence.

Based on the range of the conformal dimensions, the best dual
description of the local half-BPS operators in N = 4 SYM are

fluctuations of the background fields (super-gravitons)[Gubser,
Klebanov, Polyakov (GKP), 98][Witten 98],
probe branes (giant gravitons) [McGreevy, Susskind, Toumbas, 00],
They play important roles in the talks by Yosuke Imamura and Seok
Kim.
BPS SUGRA solutions (bubbling geometry) [Lin, Lunin, Maldacena,
04].

Some non-BPS local operators with large conformal weights are
dual to semi-classical string solutions. [GKP, 02, for N = 4 SYM][Bin
Chen, JW 08, for ABJM]
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Witten diagrams

The three point function of single trace light operators (dual to
supergravitons) are computed holographically using Witten
diagrams. [GKP, 98][Witten, 98].
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Three-point functions in N = 4 SYM and ABJM
theories

In N = 4 SYM, these 3pt functions of half-BPS operators at strong
coupling limit coincide with the ones in the free field theory limit.
[Lee, Minwalla, Rangamani, Seiberg, 98]

This non-renormalization theorem was proved in various ways, e.
g. [Baggio, de Boer, Papadodimas, 12].
In ABJM theory, the 3pt functions of 1/3-BPS operators do not
enjoy such a non-renormalization theorem [Hirano, Kristjansen,
Young, 12].
Computation of such functions for most general case is still great
challenge for supersymmetric localization and integrability
method.
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Two-point functions: integrability and holography

The computations of 2pt functions of local non-BPS operators
reduced to the study of anomalous dimensions (conformal
weights) of these operators.

In planar limit, this problem is essentially solved by integrability.
(Review: [Beisert etal, 10])
The holographic computation of the conformal weight is just
compute the energy of the dual string solutions.
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Holographic Heavy-Heavy-Light(HHL) 3pt functions

In 2010, a holographic method for 2pt functions of heavy non-BPS
operators was proposed by [Janik, Surowka, Wereszczynski, 10].

This quick led to the holographic prescription for HHL
(non-BPS–non-BPS–BPS) 3pt functions. [Zarembo, 10][Costa,
Monteiro, Santos, Zoakas, 10]

In [Bak, Chen, JW, 11] This computations was generalized to
operators dual to D-branes.
For two point functions, we stressed the role played by Rothian.
An example of 3pt functions was computed to show the
prescription.
Contributions from open string attached on such D-branes was
also computed.
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Holographic 3pt functions

Later on, more examples of 3pt HHL correlators for D-branes were
computed, both for N = 4 SYM [Bissi, Kristjansen, Young, Zoubos,
11] and ABJM theories [Hirano, Kristjansen, Young, 12].

For N = 4 SYM theory, it was found surprisely that the holographic
results for extremal case are different from weak coupling results.
It was found that the holographic results coincide with free theory
limit for some non-extremal cases. [Caputa, de Mello Koch, Zoubos,
12]

Regularization for extremal case was proposed. [Lin,
12][Kristjansen, Mori, Young, 15]

But these regularization methods cannot be justified physically.
And it does not resolve all the mismatches.
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Two effects

We showed that the following two effects should be taken into
account:

Orbit average over the moduli space (generated by non-trivial
global symmetries broken by the semi-classical brane solutions).
Contributions from the wave functions of the heavy states.
This two effects were studied in [Bajnok, Janik, Wereszczynski, 14]
for semiclassical string cases. But their treatment was not
systematic enough.
A. Their formulae did not reproduce the charge conservation we
will discuss below.
B. They did not take into account the effects of higher conversed
charges in the orbit average.
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More on ABJM case

The computation of HHL 3-pt functions in ABJM theory is part of
the large project on studying them using integrability in the planar
limit.

In the weak coupling limit (with the light operator being non-BPS),
we found the result is proportional to the inner product of a
integrable state (from the heavy operators) and the Bethe state
(from the light operator) and conjectured general formula for the
results when the single trace operator is in the scalar sector.
[Yang, Jiang, Komatsu, JW, 2103.15840[hep-th]].
The results at weak coupling and strong coupling are different, as
expected.
It is interesting to get wrapping corrects at strong coupling from
the holographic result.
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A toy model from QM

This is essentially a review of work of [Monin, Pirtskhalava, Rattazzi,
Seibold, 16] and partly [Bajnok, Janik, Wereszczynski, 14].

Consider a QM system with d. o. f. living on a circle θ ∈ [0, 2π].
And the action S[θ] is invariant under global U(1)

θ → θ + c, c ∈ [0, 2π]. (1)

We plan to compute the expectation value of a light operator O for
a state with a large U(1) charge J , |J〉,

〈J |O|J〉. (2)

Here by light, we mean the quantum numbers of O are small.
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A toy model from QM

We plan to compute the above expectation values in the following
semi-classical (WKB) limit,

J →∞ , ~→ 0 , ~J : fixed . (3)

In this limit, the wave function is given by the “WKB”-form,

〈θ|J〉 = eiJθ , 〈J |θ〉 = e−iJθ , (4)

and the path integral

〈J |O(t = 0)|J〉 =

∫
Dθ(t) e−iJθ(t=+ε)O[θ(t = 0)]eiJθ(t=−ε)e

i
~S[θ] ,

(5)
can be evaluated by the stationary-phase, or equivalently
saddle-point approximation.
Here we have already assume that 〈θ|O|θ′〉 = O[θ]δ(θ − θ′).

Jun-Bao Wu CJQS-TJU



A toy model from QM

We plan to compute the above expectation values in the following
semi-classical (WKB) limit,

J →∞ , ~→ 0 , ~J : fixed . (3)

In this limit, the wave function is given by the “WKB”-form,

〈θ|J〉 = eiJθ , 〈J |θ〉 = e−iJθ , (4)

and the path integral

〈J |O(t = 0)|J〉 =

∫
Dθ(t) e−iJθ(t=+ε)O[θ(t = 0)]eiJθ(t=−ε)e

i
~S[θ] ,

(5)
can be evaluated by the stationary-phase, or equivalently
saddle-point approximation.

Here we have already assume that 〈θ|O|θ′〉 = O[θ]δ(θ − θ′).

Jun-Bao Wu CJQS-TJU



A toy model from QM

We plan to compute the above expectation values in the following
semi-classical (WKB) limit,

J →∞ , ~→ 0 , ~J : fixed . (3)

In this limit, the wave function is given by the “WKB”-form,

〈θ|J〉 = eiJθ , 〈J |θ〉 = e−iJθ , (4)

and the path integral

〈J |O(t = 0)|J〉 =

∫
Dθ(t) e−iJθ(t=+ε)O[θ(t = 0)]eiJθ(t=−ε)e

i
~S[θ] ,

(5)
can be evaluated by the stationary-phase, or equivalently
saddle-point approximation.
Here we have already assume that 〈θ|O|θ′〉 = O[θ]δ(θ − θ′).
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A toy model from QM

The saddle-point in the WKB limit is given by

δS[θ]

δθ(t)
+ ~J (δ(t+ ε)− δ(t− ε)) = 0 . (6)

Note that the operator O does not affect the saddle-point equation
since we assumed that it is light.
Now, suppose we found one solution satisfying the equation (6),
θ∗0(t). Then, it immediately follows from the U(1) invariance (1)
that there should be a family of solutions, or equivalently a moduli
of solutions, given by

θ∗c (t) ≡ θ∗0(t) + c , c ∈ [0, 2π] . (7)
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Orbit average

Therefore, the correct saddle-point formula is given by

〈J |O(t = 0)|J〉 WKB
=

∫ 2π

0

dc

2π
e−iJθ

∗
c (+ε)O[θ∗c (0)]eiJθ

∗
c (−ε)e

i
~S[θ∗c ] .

(8)

In the limit ε→ 0, the contributions from the two wave functions
cancel. In addition, the action S[θ] is invariant under the shift by c
by assumption,

S[θ∗c ] = S[θ∗0] . (9)

Therefore we obtain a simpler expression

〈J |O(t = 0)|J〉 WKB
= e

i
~S[θ∗0 ]

∫ 2π

0

dc

2π
O[θ∗c (0)] . (10)

As we can see, the final result is given by an average over the
parameter c and this is precisely the orbit average discussed in
[Bajnok, Janik, Wereszczynski, 14].
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Boundary term

Let us now generalize the computation slightly and consider the
situation in which the bra and ket states are not identical:
〈J + q|O|J〉. We assume J is again large (J ∼ 1/~� 1) while q is
taken to be O(1).

The previous argument leads to

〈J + q|O(t = 0)|J〉 WKB
= e

i
~S[θ∗0 ]−iqθ∗0(0)

∫ 2π

0

dc

2π
e−iqcO[θ∗c (0)] . (11)

Especially, for O being Op ≡ eipθ, an operator with U(1) charge p,
we have

〈J + q|Op(t = 0)|J〉 WKB
= e

i
~S[θ∗0 ]δp,q, (12)

where δp,q is manifestation of the U(1) charge conservation.
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Two lessons on boundary term

First, when the bra and ket states are different, there is a nontrivial
(boundary-term) contribution from the wave functions.
Second, such contributions, together with the orbit average, are
essential for reproducing a correct charge conservation δp,q.
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HHL 3−point functions

The main subject of this talk is the three-point functions of two
BPS sub-determinant operators and one BPS single-trace
operator, in both N = 4 SYM (protected case) and ABJM theory
(unprotected case).

The sub-determinant operator with charge M will be denoted by
DM and the single trace operator with charge L will be denoted by
OL.
Structure constant:

〈D̂M+k|ÔL(t = 0)|D̂M 〉 =

∫
DX Ψ∗M+k[X]ÔL[X(t = 0)]

ΨM [X]e−SDBI+WZ[X] .
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〈D̂M+k|ÔL(t = 0)|D̂M 〉 =

∫
DX Ψ∗M+k[X]ÔL[X(t = 0)]
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Global charges

Conformal dimension ∆,

U(1) R-charge J .

X∗τ0,φ0 = X∗0 |t→t−iτ0,φ→φ+φ0 . (13)

Shift in wave functions Ψ ∼ exp(−i∆t+ iJφ),

Ψ 7→ e−∆τ0+iJφ0Ψ. (14)
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Master equation

〈D̂M+k|ÔL(t = 0)|D̂M 〉=
∫

dτ0

∫
dφ0

2π︸ ︷︷ ︸
orbit average

ÔL[X∗τ0,φ0(t = 0)]

e(∆M+k−∆M )τ0e−i(JM+k−JM )φ0︸ ︷︷ ︸
wave function

. (15)
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Holographic dictionary

DM is dual to probe D-brane/M-brane.

The low energy effective theory on these brane is given by
S = SDBI + SWZ .
OL is dual to fluctuation of the background fields which induced
δS.
The ÔL in the master equation is given by ,

ÔL ∼ δS = δSDBI + δSWZ . (16)

as in the old approach [Bak, Chen, JW, 11][Bissi, Kristjansen, Young,
Zoubos, 11].
Remark: The last step is similar to the holographic computations
of correlators of BPS Wilson loops (surfaces) and local BPS
operators [Berenstein, Corrado, Fischler, Maldacena, 98][Giombi, Ricci,
Trancanelli, 06][Chen, Liu, JW, 07]
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Figure: Comparison of new and old approaches.
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We consider the following sub-determinant operator in N = 4
super Yang-Mills

DM = χM (Z) ≡ 1

M !
δ

[b1b2···bM ]
[a1a2···aM ]Z

a1
b1
· · ·ZaMbM , (17)

δ
[b1···bM ]
[a1···aM ] ≡

∑
σ∈SM

(−1)|σ|δb1aσ1
· · · δbMbσM . (18)

and the following single trace operator

OL ≡ trZ̃L , Z̃ =
Z + Z̄ + Y − Ȳ

2
, (19)
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The metric of AdS5 × S5 with unit radius and in terms of the global
coordinates,

ds2 = ds2
AdS + ds2

S5 , (20)

where

ds2
AdS = − cosh2 ρdt2 + dρ2 + sinh2 ρ dΩ̃2

3 , (21)

ds2
S5 = dθ2 + sin2 θdφ2 + cos2 θ dΩ2

3 .

where dΩ̃2
3 and dΩ2

3 are the metric on S3 which we parametrize as

dΩ̃2
3 = dχ̃2

1 + sin2 χ̃1 dχ̃2
2 + cos2 χ̃1dχ̃2

3 ,

dΩ2
3 = dχ2

1 + sin2 χ1 dχ2
2 + cos2 χ1dχ2

3 .
(22)
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The D-brane dual to DM is localized at θ = θ0 and extended along
χ1,2,3 directions. It is rotating along the φ direction at the speed of
light. The worldvolume coordinates of the D3 brane σµ

(µ = 0, 1, 2, 3) are identified with the target space coordinates as
follows:

ρ = 0, σ0 = t, φ = t, σi = χi, i = 1, 2, 3. (23)

The value of θ0 is related to the charge of the giant graviton as;

cos2 θ0 =
M

N
, (24)

Note that the classical D3-brane equations of motion lead to φ = t.
The holographic dual of OL is the fluctuation of the background
fields (super-graviton). I omit the details here.
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Results for N = 4 SYM

Diagonal structure constant

CDMDMOL = − i
L + (−i)L

2
√
L

(
PL

2
(cos 2θ0) + PL

2
−1(cos 2θ0)

)
. (25)

This perfectly matching the field theory results, as demanding
from the non-renormalization theorem.
The old computations without orbit average failed to reproduce the
field theory results here.
The holographic off-diagonal structure constant, with orbit average
and contributions of wave functions included, matches the field
theory results for non-extremal cases as well.
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Results for N = 4 SYM

Off-diagonal structure constant,

CDM+kDMOL =

− 1

2

√
L
(
iL−k + (−i)L−k

) Γ(L+k
2 ) cos2 θ0 sink θ0

Γ(1 + k)Γ(1 + L−k
2 )

2F1

(
1 + k−L

2 , 1 + k+L
2 , 1 + k; sin2 θ0

)
.

for L > k.

This matches the field theory results for non-extremal cases as
well.
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Application to ABJM theory

Diagonal structure constant,

CDMDMOL =

(
λ

2π2

)1/4 √2L+ 1

L
(1 + (−1)L)

(−1)
L
2

+12L
√
πΓ(L2 + 1)

Γ(L+3
2 )

(1− 4α4)
1
2

(L−1)

×
[
(1− 4α4) 2F1

(
−1

2(L+ 1),−L
2 ; 1; 4α4

4α4−1

)
(26)

+2α4(L+ 1) 2F1

(
−1

2(L− 1),−L
2 + 1; 2; 4α4

4α4−1

)]
.

with the relation among M,N and α is

M

N
=
√

1− 4α4 − 4α4 log

(
1 +
√

1− 4α4

2α2

)
. (27)
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Application to ABJM theory

The strong coupling results are different from the weak coupling
ones.
This is as expected, since there are no non-renormalization
theorems for BPS 3−pt functions in ABJM theory.
The result is to be tested against integrability.
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Conclusion

We computed HHL correlators from branes dual to
sub-determinant operators, including orbit average and wave
function contributions.

We performed another non-trivial precise test of AdS/CFT duality
for the case of N = 4 SYM where there does exist
non-renomalization theorem.
For ABJM theory, where there are no such non-renormalization
theorems, the holographic computations provide a non-trival
prediction for field theory computations at strong coupling.
For off-diagonal case 〈DM+k|OJ |DM 〉, the holographic result is
sensitive to k, though k �M,N .
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Outlook

Compute the HHL correlators involving light non-BPS operators at
arbitrary coupling in planar limit using integrability. [Jiang, Komatsu,
JW, Yang, in progress]

Revisit the holographic computations of HHL correlators for GKP
strings.
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Thanks for Your Attention !
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