Conformal anomalies a vs c

Jaewon Song (Korea Advanced Institute of Science and Technology)

Based on [Agarwal, JS 1912.12881][Agarwal, KH Lee, JS 2007.16165] [Kang, Lawrie, JS 2106.12579][Kang, Lawrie, KH Lee, JS 2111.xxxx]

East Asia Joint Symposium on Fields and Strings 2021 @Osaka City University, Nov 23rd, 2021

Central charges of 4d CFT

Conformal anomalies of a 4d CFT are parametrized by two parameters (central charges) a & c:

 It is now well-established that a-function is a monotonically decreasing function along the RG flow (a-theorem): [Komargodski-Schwimmer]

 $a_{IR} <$

- One can think of the a-function as a quantity that measures degrees of freedom.
- The c-function, on the other-hand, does *not* always decrease along the RG flow.

$$\left\langle T^{\mu}_{\mu}\right\rangle = \frac{c}{16\pi^2}W^2 - \frac{a}{16\pi^2}E$$

$$< a_{UV}$$

Hofman-Maldacena bound on central charges

• The ratio a/c of central charges is bounded by **unitarity**: [Hofman-Maldacena]

$$\frac{1}{2} \le \frac{a}{c} \le \frac{31}{18}$$
 (lower/up

- For superconformal theory:
 - $\mathcal{N}=1$ SCFT: $\frac{1}{2} \le \frac{a}{2} \le \frac{3}{2}$ (lower/upper bound saturated by free chiral/free vector)
 - $\mathcal{N}=2$ SCFT: $\frac{1}{2} \le \frac{a}{c} \le \frac{5}{4}$ (lower/upper bound saturated by free hyper/free vector)
 - $\mathcal{N}=3$ or $\mathcal{N}=4$ SCFT: a = c [Aharony-Evtikhiev]

per bound saturated by free scalar/free vector)

The role of a and c

- Any holographic theories have a = c (for large N). [Henningson-Skenderis]
- [Kovtun-Son-Starinet] to [Katz-Petrov][Buchel-Myers-Sinha]

$$\frac{\eta}{s} \ge \frac{1}{4\pi} \left(1 - \frac{c-a}{c} + \cdots \right)$$

- The 'high-temperature limit' of the supersymmetric index is governed by a & c: []. Kim, S. Kim, S. [Cabo-Bizet, Cassani, Martelli, Murthy]

$$I(p = q = e^{-\beta}) \to \exp\left(\#\frac{3c - 2a}{\beta^2}\right)$$

This formula accounts for the entropy of supersymmetric black holes in AdS₅. [Choi, Kim, Kim, Nahmgoong][Benini-Milan]

• When $a \neq c$, there is a correction to the celebrated **entropy-viscosity ratio bound** of

• Also appears in the universal part of entanglement entropy. [Perlmutter-Rangamani-Rota]

Large N scaling behavior of a and c

• Typical 4d gauge theories (of rank N) have

$$a \sim c \sim \mathcal{O}(N^2),$$

condition for it to be holographic)

- Is this true in general?
 - Is the above scaling behavior for a and c true in general?
 - Any **universality** for the sign of c a?
 - Is it possible to have a = c for finite N? (for $\mathcal{N}=0, 1, 2$ SUSY)

and $c - a \sim \mathcal{O}(N)$

so that a = c in the large N limit, but not for a finite N. (satisfying the necessary

Non-universal of scaling behavior of central charges a & c

Example: 'Simplest' Large N SCFT [Agarwal, |S |9|2]

Matter contents:

Gauge invariant operators:

It looks like any other gauge theories with a sparse low-lying spectrum.

- Coulomb branch operators: Φ^n , $2 \le n \le N$
- dressed mesons: $Q\Phi^n \widetilde{Q}, \ 0 \le n \le N-1$

• 'baryon':
$$Q(\Phi Q)(\Phi^2 Q) \dots (\Phi^{N-1}Q)$$

• 'anti-baryon': $\widetilde{Q}(\Phi \widetilde{Q})(\Phi^2 \widetilde{Q}) \dots (\Phi^{N-1} \widetilde{Q})$

This theory flows to a superconformal fixed point in the IR.

- decoupled free fields.
- decouple for low *i*.
- None of the 'baryons' decouple. $\Delta_R \sim O(N)$
- The decoupled field can be removed by introducing flip field and the superpotential coupling $W = X\mathcal{O}$. " $\mathcal{O} \leftrightarrow X$ "

- Coulomb branch operators: Φ^n , $2 \le n \le N$
- dressed mesons: $Q\Phi^n \widetilde{Q}, \ 0 \le n \le N-1$
- 'baryon': $Q(\Phi Q)(\Phi^2 Q)\dots(\Phi^{N-1}Q)$
- 'anti-baryon': $\widetilde{Q}(\Phi \widetilde{Q})(\Phi^2 \widetilde{Q}) \dots (\Phi^{N-1} \widetilde{Q})$

This simple theory flows to a superconformal fixed point with a number of

• Some of the Coulomb branch operators ${
m Tr}\Phi^i$ and the dressed mesons $Q\Phi^iQ$

 Φ Φ

Feature 1: The O(N) degrees of freedom

 $a \simeq 0.500819 N - 0.692539$ $c \simeq 0.503462 N - 0.640935$

 $a/c \sim 0.994757 - 0.111888/N$

The degrees of freedom grows as $O(N^1)$ instead of the natural matrix degrees of freedom $O(N^2)!$ The ratio *a*/*c* asymptotes to a value close to 1, but *not exactly*.

Feature 2: Dense spectrum

It does not seem to exhibit confinement/deconfinement transition.

The spectrum of chiral operators form a dense band, instead of being sparse! (analog of the Liouville theory? Decompactification?)

Classifying SUSY large N theories

- Let us classify all possible supersymmetric large N gauge theories in 4d with the following conditions:
 - The gauge group is simple: G=SU(N), SO(N), Sp(N)
 - The flavor symmetry is fixed as we take large N limit.
 - No superpotential except the flip for the decoupled ops (at the moment).
- In the context of AdS/CFT: flavor symmetry of the boundary CFT = gauge symmetry in the bulk.

[Agarwal, Lee, S]

See [Bhardwaj, Tachikawa] for the classification of $\mathcal{N}=2$ gauge theories.

Theory	β_{matter}	chiral	dense	N_f
$1 \operatorname{\mathbf{Adj}} + N_f (\Box + \overline{\Box})$	$\sim N$	Ν	Y	$N_f \ge 1$
$\Box + 1 \overline{\Box} + N_f (\Box + \overline{\Box})$	$\sim N$	Ν	Y	$N_f \ge 0$
$\square + 1 \square + N_f (\square + \square)$	$\sim N$	Ν	Y	$N_f \ge 4$
$+1\overline{\square} + 8\overline{\square} + N_f (\square + \overline{\square})$	$\sim N$	Y	Y	$N_f \ge 0$
$\Box + 2 \overline{\Box} + N_f (\Box + \overline{\Box})$	$\sim 2 N$	Ν	Ν	$N_f \ge 0$
$\overline{\Box} + 1 \overline{\Box} + 8 \underline{\Box} + N_f (\Box + \overline{\Box})$	$\sim 2 N$	Y	Ν	$N_f \ge 0$
$\overline{\Box} + 1 + 1 + 1 + N_f (\Box + \overline{\Box})$	$\sim 2 N$	Ν	Ν	$N_f \ge 0$
$1 \square + 2 \square + 8 \square + N_f (\square + \square)$	$\sim 2 N$	Y	Ν	$N_f \ge 0$
$+2\square + 16\square + N_f (\square + \square)$	$\sim 2 N$	Y	Ν	$N_f \ge 0$
$+1 \Box + 1 \Box + N_f (\Box + \Box)$	$\sim 2 N$	Ν	Ν	$N_f \ge 0$
$\Box + 2 \Box + N_f (\Box + \Box)$	$\sim 2 N$	Ν	Ν	$N_f \ge 0$
$\Box \Box + 1 \Box + 8 \Box + N_f (\Box + \Box)$	$\sim 2 N$	Y	Ν	$N_f \ge 0$
$+1\square +1\square +N_f (\square + \square)$	$\sim 2 N$	Ν	Ν	$N_f \ge 0$
2 $\operatorname{Adj} + N_f (\Box + \overline{\Box})$	$\sim 2 N$	Ν	Ν	$N_f \ge 0$
$\overline{\Box}) + 2 (\overline{\Box} + \overline{\Box}) + N_f (\Box + \overline{\Box})$	$\sim 3 N$	Ν	Ν	$0 \le N_f \le 2$
$\square + 3 \square + N_f (\square + \square)$	$\sim 3 N$	Ν	Ν	$0 \le N_f \le 6$
$+2\Box +2\overline{\Box} + N_f (\Box + \overline{\Box})$	$\sim 3 N$	Ν	Ν	$0 \le N_f \le 4$
$+1(\Box + \Box) + 1(\Box + \Box)$	$\sim 3 N$	Ν	Ν	•
$+1\square +1\square +N_f (\square + \square)$	$\sim 3 N$	Ν	Ν	$0 \le N_f \le 2$
3 Adj	$\sim 3 N$	Ν	Ν	

Theory	β_{matter}	dense spectru
$1 \Box + N_f \Box$	$\sim N$	Y
$1 \square + N_f \square$	$\sim N$	Y
$2 \Box + N_f \Box$	$\sim 2 N$	Ν
$1 \Box + 1 \Box + N_f \Box$	$\sim 2 N$	Ν
$2\square + N_f \square$	$\sim 2 N$	Ν
	$\sim 3 N$	Ν

Theory	β_{matter}	dense spectrum
$1 \Box + 2N_f \Box$	$\sim N$	Υ
1 \square $+ 2N_f$ \square	$\sim N$	Υ
$2 \Box + 2N_f \Box$	$\sim 2N$	Ν
$1 \Box + 1 \Box + 2N_f \Box$	$\sim 2N$	Ν
$2\square + 2N_f\square$	$\sim 2N$	Ν
$2 \Box + 1 \Box + 2N_f \Box$	$\sim 2N$	Ν
$1 \Box + 2 \Box + 2N_f \Box$	$\sim 2N$	Ν
$3\square + 2N_f \square$	$\sim 3N$	Ν
	$\sim 3N$	Ν

SO(N) theories

Feature 3: Multiple bands eg) SU(N) + 1 adj + $N_f=2$

Figure 6: Plot of a/c vs N for the SU(N) theory with 1 adjoint and $N_f = 2$. The orange curve fits the plot with $a/c \sim 0.936734 - 0.162684/N$.

Figure 8: Dimensions of single-trace gauge-invariant operators including baryons in SU(N)+1 Adj +2 (\Box + $\overline{\Box}$) theory. The baryons(red) form another band above the band of Coulomb branch operators and mesons.

[Agarwal, Lee, JS]

The ratio of central charges a/c does not go to 1.

We see the **secondary band** of size O(N). They are formed by 'baryons'.

- 'baryon': $Q(\Phi Q)(\Phi^2 Q) \dots (\Phi^{N-1}Q)$
- 'anti-baryon': $\widetilde{Q}(\Phi \widetilde{Q})(\Phi^2 \widetilde{Q}) \dots (\Phi^{N-1} \widetilde{Q})$

Supersymmetric analog of 'band' theory?

Sparse vs Dense spectrum

Out of 35 classes of all possible large *N* gauge theories, 8 of them have **dense spectrum** and the rest have sparse spectrum.

Sparse: The gap is O(1). a = c at large N. Dense: The gap is O(1/N). $a \neq c$ at large N.

c – *a* can have either sign.No universality!

Can we have 4d CFTs with a = c even at finite N? (with $\mathcal{N}=0, 1, 2$ SUSY)

* $\mathcal{N}=3$, 4 SCFTs *must* have a=c.

$\mathcal{N}=2$ SCFTs with a = c (and beyond)

- There exists genuinely $\mathcal{N}=2$ SCFTs with a = c (exact in N)!
- $\widehat{\Gamma}(G)$ theory labelled by two ADE Lie algebras Γ, G .
 - G labels the 'gauge group' and Γ labels the shape of the 'quiver'.
 - Ingredients:
 - $\mathscr{D}_p[G]$ Argyres-Douglas type theories.
 - (G, G) conformal matter theories.
 - Gauge the diagonal G. It is a non-Lagrangian theory in general.
- For $\Gamma = D_4, E_6, E_7, E_8$ and some special choice of $G, \hat{\Gamma}(G)$ theory has a = c. These choices do not involve conformal matter. ($a \neq c$ for other choices)

[Kang-Lawrie-JS]

[Cecotti-Del Zotto]

[Del Zotto-Heckman-Tomasiello-Vafa] [Ohmori-Shimizu-Tachikawa-Yonekura]

$\mathcal{D}_{p}[G]$ theory

- It is a 4d $\mathcal{N}=2$ SCFT (Argyres-Douglas type) with flavor symmetry G (or larger).
- It can be realized as the 6d $\mathcal{N}=(2, 0)$ theory of type G compactified on a sphere with one irregular puncture (p) and one full regular puncture (flavor G).
- The flavor symmetry is **exactly** G for some choice of p, when the irregular puncture does not possess extra flavor symmetry.
- k The flavor central charge for G:

<i>G</i>	$SU(N)$	SO(2N)
No additional symmetry	(p,N) = 1	$p \notin 2\mathbb{Z}_{>0}$

[Cecotti-Del Zotto] [Cecotti-Del Zotto-Giacomelli] [Xie][Wang-Xie]

Irregular puncture (*p*)

$$_{G} = \frac{2(p-1)}{p} h_{G}^{\vee}$$

 E_6 E_8 E_7 $p \notin 3\mathbb{Z}_{>0}$ $p \notin 2\mathbb{Z}_{>0}$ $p \notin 30\mathbb{Z}_{>0}$

Gauging $\mathcal{D}_p[G]$ theories

 In order to gauge the flavor and obtain SCFT, the 1-loop beta function for the gauge group should vanish:

 $\beta_G = 0 \quad \leftrightarrow \quad \sum k_i = 4h_G^{\vee}$ flavor central charges k_i : "matter" contribution to the beta function.

- Consider gluing a number of $\mathscr{D}_p[G]$ theories to form $\mathcal{N}=2$ SCFT: $\sum_{i=1}^n \frac{2(p_i-1)}{p_i} h_G^{\vee} = 4h_G^{\vee} \rightarrow \sum_{i=1}^n \frac{1}{p_i} = n-2$
- Only 4 non-trivial solutions: (2, 2, 2, 2), (3, 3, 3), (2, 4, 4), (2, 3, 6)

[Cecotti, Vafa] [Cecotti, Del Zotto, Giacomelli] [Closset, Giacomelli, Schafer-Nameki, Wang] [Kang-Lawrie-JS]

$\Gamma(G)$ theory with $\Gamma = D_4$

 $\widehat{\Gamma}(G)$ Quivers via gauging \mathcal{D}_{i} (p_1, p_2, p_3, p_4) $\mathcal{D}_2(G)$ (2,2,2,2) $\widehat{D}_4(G)$ $\mathcal{D}_2(G)$ – $-\mathcal{D}_2$ ($\mathcal{D}_2(G)$ $\mathcal{D}_3(G)$ $\widehat{E}_6(G)$ (1,3,3,3) $\mathcal{D}_3(G)$ – - \mathcal{D}_3 (G) $\mathcal{D}_2(G)$ $\widehat{E}_7(G)$ (1, 2, 4, 4) $\mathcal{D}_4(G)$ \mathcal{D}_4 $\mathcal{D}_2(G)$ $\widehat{E}_8(G)$ (1, 2, 3, 6) $\mathcal{D}_3(G)$ $\mathcal{D}_6(G)$

[Kang-Lawrie-JS]

a = c is obtained when the largest comark α_{Γ} of Γ satisfies

$$gcd(h_G^{\vee}, \alpha_{\Gamma}) = 1 \implies a =$$

$$\alpha_{D_4} = 2, \ \alpha_{E_6} = 3, \ \alpha_{E_7} = 4, \ \alpha_{E_8} =$$

The $\Gamma(G)$ theory with a = chas no flavor symmetry.

 $\frac{5}{6}\dim(G)$

Lagrangian $\widehat{\Gamma}(G)$ theory with $\Gamma = D_4, E_6, E_7, E_8$

- When G = SU(N) with $N = \alpha_{\Gamma} \ell$, we recover affine quiver gauge theory obtained via ℓ D3-branes probing ALE singularity \mathbb{C}^2/Γ .
- Our theory is a natural generalization of the affine quiver gauge theory. For $N \neq \alpha_{\Gamma} \ell$, we 'fractionalize' the D3-brane charges.

$$\mathcal{D}_{p}(SU(p\ell)) = \boxed{SU(p\ell)} - (2\ell) - (2\ell)$$

 $\hat{E}_6(SU(3\ell))$

 $\hat{D}_4(SU(2\ell))$

$\mathcal{N}=2$ SCFTs with a = c

- Some of these theories have class-S realization
 - $\hat{E}_6(SU(2)) = (A_2, D_4)$:
 - Coulomb branch op: {4/3, 4/3, 4/3, 2}
 - $\hat{E}_7(SU(3)) = E_6^{12}[4]$
 - $\hat{E}_8(SU(5)) = E_8^{30}[6]$
 - Most of $\widehat{\Gamma}(G)$ theories are not found in c
- They all have 1 exactly marginal coupling.
- They all have center 1-form symmetry Z(G).

ation		
	$\widehat{\Gamma}(G)$	a = c
h	$\widehat{D}_4(SU(2\ell+1))$	$2\ell(\ell+1)$
}	$\widehat{E}_6(SU(3\ell \pm 1))$	$2\ell(3\ell\pm2)$
	$\widehat{E}_6(SO(6\ell))$	$2\ell(6\ell+1)$
	$\widehat{E}_6(SO(6\ell+4))$	$2(2\ell+1)(3\ell+2)$
	$\widehat{E}_7(SU(4\ell \pm 1))$	$6\ell(2\ell\pm1)$
class-S.	$\widehat{E}_8(SU(6\ell \pm 1))$	$10\ell(3\ell\pm1)$

The full list of a = c theories in $\hat{\Gamma}(G)$

Schur index for $\Gamma = D_4, E_6, E_7, E_8$

$$I_{\mathscr{D}_p(G)}(q, \vec{z}) = \operatorname{PE}\left[\frac{1}{(1 + q)^2}\right]$$

• From this, we obtain a neat expression of the Schur index for the $\widehat{\Gamma}(G)$ theory as:

$$I_{\widehat{\Gamma}(G)}(q) = \int [d\vec{z}] \operatorname{PE} \left[\frac{q + q^{\alpha_{\Gamma} - 1} - 2q^{\alpha_{\Gamma}}}{(1 - q)(1 - q^{\alpha_{\Gamma}})} \chi_{\operatorname{adj}}^{G}(\vec{z}) \right]$$

• For the $\hat{D}_4(SU(2\ell+1))$ theory, we find the index can be written in terms of MacMahon's generalized 'sum-of-divisor' function which is **quasi-modular**:

$$I_{\widehat{D}_4(SU(2k+1))}(q) = q^{-k(k+1)}A_k(q^2)$$
$$I_{SU(2k+1)}^{\mathcal{N}=4}(q) = q^{-\frac{k(k+1)}{2}}A_k(q)$$

• For the a = c theories we consider, the relevant $\mathscr{D}_p[G]$ theories do not have additional flavor symmetry besides G. For such case, a concise expression for the Schur index is known: $\frac{q-q^p}{(1-q^p)}\chi^G_{\rm adj}(\vec{z})$ [JS-Xie-Yan] [Kac-Wakimoto]

$$A_k(q) = \sum_{0 < m_1 < m_2 \cdots < m_k} \frac{q^{m_1 + \cdots + m_k}}{(1 - q^{m_1})^2 \cdots (1 - q^{m_k})^2}$$

$\mathcal{N}=4$ SYM and $\widehat{\Gamma}(G)$ theory

- $I_{\widehat{\Gamma}(G)}(q) = I_G^{\mathcal{N}=4}(q^{\alpha_{\Gamma}}; q^{\alpha_{\Gamma}/2-1})$
- This relation holds beyond a = c theories:
- isomorphism between associated VOAs as a graded vector space.
- More connections to $\mathcal{N}=4$ SYM:
 - 1 exactly marginal gauge coupling (S-duality?)
 - 1-form center symmetry Z(G).

• The Schur index of $\widehat{\Gamma}(G)$ theory is identical to that of the $\mathcal{N}=4$ SYM upon rescaling!

 $\widehat{\Gamma}(SU(N))$ with $gcd(\alpha_{\Gamma}, N) = 1$, $\widehat{E}_6(SO(2N)), \quad \widehat{D}_4(E_6), \quad \widehat{E}_6(E_7), \quad \widehat{E}_7(E_6),$ $\widehat{D}_4(E_8), \quad \widehat{E}_6(E_8), \quad \widehat{E}_7(E_8), \quad \widehat{E}_8(E_8).$

• The SU(N) case was found earlier by [Buican-Nishinaka] and showed that there is an

Generalization to \mathcal{N}=1 SCFTs

- Consider a number of $\mathscr{D}_p[G]$ theories gauged via $\mathcal{N}=1$ vector multiplet.
- It modifies the condition to be a CFT in the IR, since the theory now **RG flows**. From asymptotic freedom bound:

$$\sum_{i=1}^{N} \frac{2(p_i - 1)}{p_i} h_G^{\vee} < 6h_G^{\vee} \qquad \sum_{i=1}^{N} \frac{1}{p_i}$$

• The IR SCFT has a number of U(1) flavor **symmetry** originates from broken R-symmetry of each block.

[Kang-Lawrie-Lee-]S, to appear]

>	N	- 3
	⊥ ▼	0

p_1	p_2	p_3	p_4	p_5	p_1	p_2	p_3	p_4	p_5	_	p_1	p_2	p_{z}
1	1	1	1	p_5	1	2	3	10	≤ 14		1	3	3
1	1	1	p_4	p_5	1	2	3	11	≤ 13		1	3	3
1	1	p_3	p_4	p_5	1	2	4	4	p_5		1	3	3
1	2	2	p_4	p_5	1	2	4	5	≤ 19		1	3	4
1	2	3	≤ 6	p_5	1	2	4	6	≤ 11		2	2	2
1	2	3	7	≤ 41	1	2	4	7	≤ 9		2	2	2
1	2	3	8	≤ 23	1	2	5	5	≤ 9		2	2	2
1	2	3	9	≤ 17	1	2	5	6	≤ 7		2	2	2

Tuples of (p_i) 's satisfying the asymptotic freedom bound.

Unitarity at the fixed point

a valid CFT.

Unitarity bound: $\Delta \geq 1 \leftrightarrow R \geq$

- done using **a-maximization**:
 - Consider a linear combination of the maximize the trial a-function w.r.t to ϵ

$$a = \frac{3}{32}(3\mathrm{Tr}R^3 - \mathrm{Tr}R),$$

Besides checking asymptotic freedom, we should also make sure that the IR theory is

$$\geq \frac{2}{3}$$
 for the chiral operators.

• For a SCFT, we need to deduce superconformal R-charges to check unitarity. It can be [Intriligator-Wecht]

U(1) charges
$$R_{IR} = R_{UV} + \epsilon_i F_i$$
 and then

$$\frac{\partial a_{\text{trial}}}{\partial R} = 0 , \quad \frac{\partial^2 a_{\text{trial}}}{\partial R^2} < 0$$

• If all the (BPS) operators satisfy the bound, we are good to go. (*Not always sufficient!) *[Maruyoshi-Nardoni-]S]

Results:

We need to check:

$$\frac{1}{-1} \le \epsilon_i \le \frac{1}{3(p_i+1)}, \quad \epsilon_i + \epsilon_{j \ne i} \ge -1$$

Gluing 1 $\mathcal{D}_p[G]$: no SCFT

Gluing 2 $\mathcal{D}_p[G]$: $p_1 \ge 3$ and $p_2 \ge 3$

$$a = c = \frac{9p(p-2)}{64(p-1)} \dim(G)$$
 when $p_1 = p_2 = p$

Gluing 3 $\mathscr{D}_p[G]$: Need to check numerically.

Figure 2.2: Contours plot of ϵ_1 and ϵ_3 in the (p_1, p_2) plane for $p_3 = 2, 3, 4$. They all satisfy the unitarity condition in equation (2.22).

0.292293 0.287941 0.283654 0.169314

Gluing 3 $\mathcal{D}_p[G]$: no unitarity violations for generic p. Gluing 4 $\mathcal{D}_p[G]$:

no unitary violations for generic p.

Gluing 5 $\mathscr{D}_p[G]$: no unitary violations for generic p.

Gluing 6 $\mathscr{D}_p[G]$: "conformal gauging"

- vanishing beta function. It does not flow.
- unless there is an exactly marginal operator, no non-trivial SCFT.
- some of them are indeed non-trivial SCFT.

Landscape of $\mathcal{N}=1$ SCFTs with a = c

- In addition, one can add 1 or 2 adjoint chiral multiplets.
- 1 adjoint: can attach up to 4 $\mathscr{D}_p[G]$ theories. $p_i = (p_1, p_2), (2, 2, p_3), (2, 3, \le 6), (2, 4, 4), (3, 3, 3), (2, 2, 2, 2)$
- 2 adjoints: One can even have zero $\mathscr{D}_p[G]$ theories!
 - The simplest Lagrangian model with a = c: $\mathcal{N}=1$ gauge theory with 2 adjoints.
 - Can attach up to 2 $\mathcal{D}_p[G]$'s
- One can consider superpotential deformations of ADE type as in the case of adjoint SQCD. [Intriligator-Wecht]

Conclusion

Summary & future direction

- Conformal anomalies a & c of 4d CFTs capture many interesting aspects of underlying theory. (entropy-viscosity ratio, density of states, black hole entropy, entanglement entropy)
- The scaling behavior of *a* & *c* in the large *N* gauge theory is not universal: *c-a* can have either signs, $a \sim c \sim O(N^2)$ or $O(N^1)$
- We have constructed **genuinely** $\mathcal{N}=1$, 2 SCFTs with a = c, **exact in** N. The 'landscape' of such theories is huge! What about $\mathcal{N}=0$?
- Such $\mathcal{N}=2$ SCFTs $\hat{\Gamma}(G)$ share many properties with $\mathcal{N}=4$ SYM. Especially, we find the Schur index to be almost identical upon rescaling:

 $I_{\widehat{\Gamma}(G)}(q) =$

Why such a relation holds?

• What is the **holographic dual** of such a = c theories? It should forbid particular type of corrections in SUGRA action without any symmetry constraints. How?

$$I_G^{\mathcal{N}=4}(q^{\alpha_{\Gamma}}, q^{\alpha_{\Gamma}/2-1})$$

Thank you!