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Central charges of 4d CFT

 Conformal anomalies of a 4d CFT are parametrized by two parameters (central
charges) a & c:

C a
(T!) = W= — E
1672 1672
* |t is now well-established that a-function is a monotonically decreasing function
along the RG flow (a-theorem): [Komargodski-Schwimmer]
aig < dyy

* One can think of the a-function as a quantity that measures degrees of freedom.

* The c-function, on the other-hand, does not always decrease along the RG flow.



Hofman-Maldacena bound on central charges

» The ratio a/c of central charges is bounded by unitarity: [Hofman-Maldacena]

1 a 31
5 <—X< ﬁ (lower/upper bound saturated by free scalar/free vector)
C
* For superconformal theory:
I a 3 |
. N=1 SCFT: 5 < —X< 5 (lower/upper bound saturated by free chiral/free vector)
C
1 a 5
. N=2 SCFT: 5 < —X< Z (lower/upper bound saturated by free hyper/free vector)
C

e N=3 orN=4SCFT: a=c [Aharony-Evtikhiev]



The role of a and ¢

* Any holographic theories have a = c (for large N). [Henningson-Skenderis]

 When a # c, there is a correction to the celebrated entropy-viscosity ratio bound of
[Kovtun-Son-Starinet] 1O [Katz-Petrov][Buchel-Myers-Sinha]
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* Also appears in the universal part of entanglement entropy. [Perimutter-Rangamani-Rota]

* The ‘high-temperature limit’ of the supersymmetric index is governed by a & c:
[J. Kim, S. Kim, JS] [Cabo-Bizet, Cassani, Martelli, Murthy]
3c — 2a

(p=q=e")— eXp( 7

This formula accounts for the entropy of supersymmetric black holes in AdSs.
[Choi, Kim, Kim, Nahmgoong][Benini-Milan]




Large N scaling behavior of a and ¢

* Typical 4d gauge theories (of rank N) have
a~c~ ON?, and ¢c—a~ ON)

so that a = c in the large N limit, but not for a finite N. (satisfying the necessary
condition for it to be holographic)

* |s this true in general?

* |s the above scaling behavior for a and c true in general?
* Any universality for the sign of ¢ — a?

e |s it possible to have a = c for finite N? (for N=0, 1, 2 SUSY)



Non-universal of scaling behavior
of central charges a & C



Example: ‘Simplest’ Large N SCFT

[Agarwal, |S 1912]
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Gauge invariant operators:

e Coulomb branch operators: &, 2 <n < N

e dressed mesons: QCD”@, 0<n<N-—-1

It looks like any other gauge theories e ‘baryon: Q(2Q)(22Q)...(2V~1Q)
with a sparse low-lying spectrum. [ .\ 00 5@0)@20). . (@10

This theory flows to a superconformal fixed point in the IR.



N 1 — NRg e dressed mesons: Q®"Q, 0 <n < N — 1
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1 — NRg e ‘baryon’: Q(®Q)(®*Q)...(dV1Q)

SU N) U(:_)B U(l)A R e Coulomb branch operators: ®", 2 <n < N
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e ‘anti-baryon’: @(@@)(@2@) . ((I)N_lé)

This simple theory flows to a superconformal fixed point with a number of
decoupled free fields.

Some of the Coulomb branch operators Tr®' and the dressed mesons QCI)iQ
decouple for low I.

None of the ‘baryons’ decouple. Ay ~ O(N)

The decoupled field can be removed by introducing flip field and the
superpotential coupling W = X0. “0 < X”



Feature 1: The O(N) degrees of freedom
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The degrees of freedom grows as O(N!) instead of
the natural matrix degrees of freedom O(N?)!

The ratio a/c asymptotes to a value close to 1, but not exactly.



Feature 2: Dense spectrum
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The spectrum of chiral operators form a dense band, instead of being sparse!
(analog of the Liouville theory? Decompactification?)

It does not seem to exhibit confinement/deconfinement transition.



Classifying SUSY large N theories

[Agarwal, Lee, JS]

* |et us classify all possible supersymmetric large N gauge theories in 4d with
the following conditions:

 The gauge group is simple: G=SU(N), SON), Sp(N)
* The flavor symmetry is fixed as we take large N limit.

* No superpotential except the flip for the decoupled ops (at the moment).

* |n the context of AdS/CFT:
flavor symmetry of the boundary CFT =

See [Bhardwaj, Tachikawa] for the classification of N=2 gauge theories.



The full list of SU(N)
theories with large N limit.

(4+16 classes of theories)

N=2 SCFT (for Nt = 4)

Theory Bmatter Chiral dense Ny
1 Adj + Ny (14 00) ~ N N Y Ny>1
10TT + 1000 4+ Ne (04 00) ~ N N Y Ny >0
1H+1H+Nf(m+i) ~ N N Y Ny >4
1@+1H+85+Nf(m+i) ~ N Y Y N¢ >0
20101+ 2011 + Nf (LI411) ~2N N N Ny >0
1+ 20004104800+ Np (LU+1)) | ~2N Y N Ny >0
1Dj+1D_j+1_+1H+Nf(D+i) ~2N N N Ny >0
1@+1H+2H+85+Nf(m+i) ~2N Y N Ny >0
2@+2H+16E+Nf(m+i) ~2N Y N Ny >0
1 Adj + 1070 + 1001 + Ng (L1+107) ~2N N N Ny >0
2H+ZH+Nf(D+i) ~2N N N Ny >0
1Adj+1Dj+1H+Si+Nf(D+i) ~2N Y N Nt >0
> 1Adj+1H+1H+Nf(D+i) ~2N N N Ny >0
2 Adj + Ny (04 00) ~2N N N Ny >0
1(Dj+ﬁ)+2(H+H)+Nf(D+i) ~ 3N N N 0<Ngp<2
3H+SH+Nf(D+i) ~3N N N 0<N;<6
1Adj+25+2H+Nf(D+i) ~3N N N 0<N;<4
\1Adj+1(Dj+D_j)+1(H+H) ~ 3N N N
2Adj+IH+1H+NJc(D+i) ~3N N N 0<Ng<2
> 3 Adj ~3N N N




Theory Pmatter dense spectrum Ny
1 + Ny ~ N Y Ng >0
1L+ Ny ~ N Y N >1
2 + Ny ~ 2N N Ng >0
1 + 1L +Ny ~ 2N N Ng >0
200 + Ny ~ 2N N Ng >0
3 ~ 3N N
Theory Bmatter dense spectrum Ny
1 (114 2N ~ N Y Ny >1
17 42N ~ N Y Ny >4
2 [ + 2N ~ 2N N Ny >0
LTI+ 10 + 2N, | ~2N N Ny >0
27 £ 2N, ~ 2N N Ny >0
20114101 +2N;[1| ~2N N 0< Nf<2
1011 +20 +2Ns0 | ~2N N 0<N;<4
SH+2NfD ~ 3N N Ny <6
3L1] ~ 3N N

SO(N) theories

Sp(N) theories

N=2 SCFT for Ns =0
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Figure 6: Plot of a/c vs N for the SU(N) theory with 1 adjoint and Ny = 2. The orange

Feature 3: Multiple bands
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curve fits the plot with a/c ~ 0.936734 — 0.162684/N .
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Figure 8: Dimensions of single-trace gauge-invariant operators including baryons in SU (N )
+ 1 Adj + 2 (L0 + [J) theory. The baryons(red) form another band above the band of
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Coulomb branch operators and mesons.

[Agarwal, Lee, JS]

The ratio of central charges
a/c does not go to 1.

We see the secondary
band of size O(N). They
are formed by ‘baryons’.

o ‘baryon’: Q(®Q)(P2Q)...(dN71Q)
e ‘anti-baryon’: @/(CI)QV)(CI)QQV) e ((I)N_lé)

Supersymmetric analog
of ‘band’ theory?



Sparse vs Dense spectrum

Sparse

Dense

Out of 35 classes of all possible
large N gauge theories, 8 of
them have dense spectrum and
the rest have sparse spectrum.

Sparse: The gap is O(1). a = ¢ at large N.
Dense: The gap is O(1/N). a # c at large N.

C — a can have either sign.
No universality!



Can we have 4d CFTs with a = ¢ even
at finite N? (with N=0, 1, 2 SUSY)

*N=3, 4 SCFTs must have a=c.



‘N=2 SCFTs with ¢ = ¢ (and beyond)

« There exists genuinely N=2 SCFTs with a = ¢ (exact in N)!

[Kang-Lawrie-)S]

. f(G) theory labelled by two ADE Lie algebras 1, G.

« (5 labels the ‘gauge group’ and | " labels the shape of the ‘quiver’.

* |ngredients:

.+ 2 p[G] Argyres-Douglas type theories. [Cecotti-Del Zotto]

. . [Del Zotto-Heckman-Tomasiello-Vafa]
(G, G) conformal matter theories. [Ohmori-Shimizu-Tachikawa-Yonekura]

« Gauge the diagonal G. It is a non-Lagrangian theory in general.

« Forl' =D, Eg, E,, Eg and some special choice of G, f(G) theory has a = c.
These choices do not involve conformal matter. (a # ¢ for other choices)



9, D |G theo ry [Ceco[ti?lgc;tltiz-gilcfégggmeIIi]

[ Xie][Wang-Xie]

e Itis a4d N=2 SCFT (Argyres-Douglas type) with flavor symmetry G
(or larger). Irregular puncture (p)

e It can be realized as the 6d N=(2, 0) theory of type G compactified on
a sphere with one irregular puncture (p) and one full regular
puncture (flavor G).

y
*

* The flavor symmetry is exactly G for some choice of p, when the
irregular puncture does not possess extra flavor symmetry.

2(p — 1
_ (p )hg .
p K

Full regular puncture (G)

4

The flavor central charge for G: ke

G SU(N) SO(@2N)  FE, . Fx

No additional symmetry | (p, N) =1 p & 2Z~g p & 3Z~¢ p ¢ 2%~q p ¢ 30Z~g




[Cecotti,Vafa]
[Cecotti,Del Zotto, Giacomelli]

[Closset,Giacomelli,Schafer-Nameki,Wang]
[Kang-Lawrie-|S]

Gauging 2 ,[G] theories

* |In order to gauge the flavor and obtain SCFT, the 1-loop beta
function for the gauge group should vanish:

Po=0 o ) k=4h)

l
flavor central charges k. : “matter” contribution to the beta
function.

« Consider gluing a number of & [G] theories to form N=2 SCFT:

Z% hg = 4hg Zi=”_2 T
i=1 i

* Only 4 non-trivial solutions: (2, 2, 2, 2), (3, 3, 3), (2, 4, 4), (2, 3, 6)



['(G) theory with" = D, E,, E-, E, s

(p1,p2,p3,ps)  L(G)  Quivers via gauging D,(G)s  a=c . .
’ a = c is obtained when the

D2 (G) largest comark ar- of I satisfies

(2,2,2,2)  D4(G)  DyG) Dy(G)  idim(G)
gcd(hf,aor) =1 — a=c

Dy (G)
R Dg(G) dp, = 2, AEs, — 3, Ap-. — 4, XAp, — 0.
(1,3,3,3)  Eg(G) 2dim(G)
Ds(G) @ﬁ Ds(G)
noan B Dy (G) 3 dim(G) The f(G) theory witha = ¢
y Sy 7 1 11m
DA(G) @ DA(G) has no flavor symmetry.
Ds(G)

(1,2,3,6)  Es(G) 2dim(G)
Ds3(G) *@’J)'- Ds (G)




Lagrangian [ (G) theorywithl = D,, E, E;, Eq

« When G = SU(N) with N = a¢, we recover affine quiver gauge theory
obtained via Z D3-branes probing ALE singularity C*/T.

* Our theory is a natural generalization of the affine quiver gauge theory. For
N # at’, we ‘fractionalize’ the D3-brane charges.

Dy(SU(p)) = [SUMH) —(SU((p— 1)) )— --- —(SU(0))
20

(O 2 E(SU@AL))
(O—C20O—B0—40)—3B0—20—0
(O—20—0 2

0 (O—20—B0— 20— D
D,(SUQ2¢)) E(SUB3Y)) (O—2O—E0—0—GO—60—10—0

Ey(SU(6¢))




N=2 SCFTs witha = ¢

e Some of these theories have class-S realization

« Eg(SU2)) = (A, D).

 Coulomb branch op: {4/3, 4/3, 4/3, 2}
. E5(SU(3)) = E}?[4]
. Eg(SU(5)) = EV[6]

 Most of f(G) theories are not found in class-S.

* They all have 1 exactly marginal coupling.

» They all have center 1-form symmetry Z(G).

['(G) a=c
Dy(SU(2¢ + 1)) 20(0 + 1)
Eo(SU(30+ 1)) 20(3¢ + 2)

Es(SO(60)) 20(6¢ + 1)
Es(SO(6¢ + 4)) 2(20 4 1)(30 + 2)
E7(SU(4¢ + 1)) 60(20 + 1)
Es(SU(6¢ £ 1)) 10¢(3¢ + 1)

The full list of ¢ = ¢ theories in ['(G)



Schurindexforl =D, E, £, Eq

« For the a = c theories we consider, the relevant @p[G] theories do not have additional flavor
symmetry besides G. For such case, a concise expression for the Schur index is known:

S q-q"° G (2 i
I3 6)(q,2) = PE [ X -(Z)] [J5-Xie-Yan]
p(6) (1 —¢g)(1 — gr)™4 [Kac-Wakimoto]

* From this, we obtain a neat expression of the Schur index for the f(G) theory as:

R + gl —2g°
If(G)(Q) = J[dZ]PE [q (i T ad](Z)]

(I =¢g)1 —g")

 For the 154(SU(2K + 1)) theory, we find the index can be written in terms of MacMahon’s
generalized ‘'sum-of-divisor’ function which is quasi-modular:

—k(k+1 2
Ip,suerin (@) = ¢V A 3 -
1 — g1 1 — Mg
] (2k+1)( )=q 2z Ai(q) o o (L= @)% (L= g™




N=4 SYM and f(G) theory

 The Schur index of f(G) theory is identical to that of the N=4 SYM upon rescaling!

If(G)(Q) — Ig/=4(qar; an/Z—l)
[(SU(N))  with ged(ar, N) =1,
 This relation holds beyond a = c theories: Es(SO@2N)), D4(Es), E¢(BE7), E:(Es),

Di(Es), FEs(Es), FE:(Fs), Es(FEs).

 The SU(N) case was found earlier by [Buican-Nishinaka] and showed that there is an
iIsomorphism between associated VOAs as a graded vector space.

» More connections to ‘N=4 SYM:
e 1 exactly marginal gauge coupling (S-duality?)

e 1-form center symmetry Z(G).



Generalization to N=1 SCFTs

[Kang-Lawrie-Lee-|S, to appear]

« Consider a number of @p[G] theories gauged Dy, (G)
via N=1 vector multiplet. /i\
P Pn(@) (G Pul@
* |t modifies the condition to be a CFT in the IR, D,,(G) D, (G)
since the theory now RG flows. From
asymptotic freedom bound:
P1 P2 P3 P4 D5 P1 P2 P3 Ps D5 P1 P2 P3 Ps Ps
N o N 11 1 1 ps 1 2 3 10 <14 1 3 3 3 p,
Zz(pz 1)hé<6hé Zl>N_3 1 1 1 pi ps 1 2 3 11 <13 1 3 3 4 <11
1=1 Pi 1 Pi I 1 p3s ps ps 1 2 4 4 ps 1 3 3 o5 <7
= 1 2 2 pi ps 1 2 4 5 <19 1 3 4 4 <5
1 2 3 <6 ps 1 2 4 6 <11 2 2 2 2 »ps
 The IR SCFT has a number of U(1) flavor 12 3 7 <41 1 2 4 7 <9 2 2 2 3 3
symmetry originates from broken R-symmetry  ~ - 0 S0

of each block. —
Tuples of (p;)’s satisfying the

asymptotic freedom bound.



Unitarity at the fixed point

* Besides checking asymptotic freedom, we should also make sure that the IR theory is
a valid CFT.

Unitarity bound: A > 1 & R > g for the chiral operators.

 For a SCFT, we need to deduce superconformal R-charges to check unitarity. It can be
done using a-maximization: lIntriligator-Wecht]

» Consider a linear combination of the U(1) charges R;r, = Ry, + €;F; and then

maximize the trial a-function w.r.t to €: ,
a = i(3T1~R3 — TrR) Wil _ P hwial _
32 | OR " OR2

 |f all the (BPS) operators satisfy the bound, we are good to go. (*Not always sufficient!)
*[Maruyoshi-Nardoni-JS]




Results:

i+ 1 1
We need to check: 35% ) < € < 3+ 1) € + € = —1
D,(G) {;} Gluing 1 2,[G]: no SCFT
Dp1 (G) 4@7 Dp2 (G) GlUIﬂg 2 @p[G] P >3 and py >3
a=c= p - 2)dlilr]ﬂ(G) when p; = py = p
64(p — 1) |

D,,(G) —é}— D,,(G) Gluing 3 QZP[G]: Need to check numerically.
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(a) Contour plot of -€; for p3 = 2.
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(c) Contour plot of -€; for ps = 3.
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(e) Contour plot of -€; for ps = 4.

Figure 2.2: Contours plot of €; and €3 in the (p1, p2) plane for p3 = 2,3,4. They all satisfy

the unitarity condition in equation (2.22).
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(f) Contour plot of -e3 for ps = 4.

Gluing 3 @p[G]:
no unitarity violations for generic p.

Gluing 4 @p[G]:
no unitary violations for generic p.

Gluing 5 @p[G]:
no unitary violations for generic p.

Gluing 6 2 ,| G]: “conformal gauging”

* vanishing beta function. It does not flow.

* unless there is an exactly marginal
operator, no non-trivial SCFT.

 some of them are indeed non-trivial SCFT.



Landscape of N=1 SCFTs with a = ¢

* |[n addition, one can add 1 or 2 adjoint chiral multiplets.

. 1 adjoint: can attach up to 4 @p[G] theories.

pi: (plap2)7 (2,2,]73)7 (2737§6)7 (27474)7 (37373)7 (2727272) D (G) _@\\\I
p ]

2 adjoints: One can even have zero @p[G] theories!

 The simplest Lagrangian model with a = c:

N=1 gauge theory with 2 adjoints. / 5
« Canattachupto2 & _[G]’s AWnpY Awwys/wvxw AWAY 2 MX?
p p[ ] ?/ E/ l% \21
* One can consider superpotential deformations of ADE ) X\
type as in the case of adjoint SQCD. [intriligator-Wecht] AW W AWNX\

Dy (k = 3,4,5) ?



Conclusion



Summary & future direction

 Conformal anomalies a & c of 4d CFTs capture many interesting aspects of underlying theory.
(entropy-viscosity ratio, density of states, black hole entropy, entanglement entropy)

* The scaling behavior of a & c in the large N gauge theory is nhot universal:
c-a can have either signs, a ~ ¢ ~ O(N?) or O(N')

« We have constructed genuinely N=1, 2 SCFTs with a = ¢, exact in N. The ‘landscape’ of such
theories is huge! What about N=07?

« Such N=2 SCFTs f’(G) share many properties with N=4 SYM. Especially, we find the Schur index
to be almost identical upon rescaling:

I () = I~ (g™ q™ )

Why such a relation holds?

 What is the holographic dual of such a = ¢ theories? It should forbid particular type of corrections
in SUGRA action without any symmetry constraints. How?



Thank you!



