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1. Introduction

Entanglement Entropy (EE)
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EE in field theory

- * ~entanglement between spatially separated regions

- Quantum effects over the horizon
(blackholes, de Sitter, ...)

- Order parameter for A
quantum phase transition B

- Holographic counterpart of geometry



1. Introduction

EE is well-studied in free field theories / CFTs.
What about the general interacting cases?

— Less understood

- Important to relate EE to realistic observables.

- Involved with the notion of radiative corrections
Can we relate EE with renormalized guantities?

- No specific symmetry / simplification available.
How can we evaluate it (analytically)?



1. Introduction

What we have done so far:

- To Investigate EE in interacting (d+1)D field theory,
In the case where the subregion is a flat half space.

-

To extract a (dominant) part of EE which is expressed
In terms of renormalized correlators of various operators.
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2. Orbifold technique

A standard way to calculate EE  --- the replica method
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Orbifold technique in free field cases
[Nishioka-Takayanagi, ‘06]
1. Replica trick

2.n=1/M , free-energy

O(MFM)
—> theory on R2/ZM x R |Sp=— ( )
aM M—1




2. Orbifold technique

Fields on R*/Zj; — those on R? with a projection
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2. Orbifold technique

Interacting field theory on the orbifold

Ex): ¢"-theory
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A Flat space one

Vertex:
AM



2. Orbifold technique

Interpretation of the propagator
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2. Orbifold technique

Free energy on the orbifold

= Connected bubble diagrams
with the projected loop momenta
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3. Two specific contributions to EE

Calculation of Z E(my, - ,myg)
i1, T4

- It Is technically difficult.

- Still, we can extract some contributions of physical importance.

/

A single loop momentum twisted:

@ on a propagator

— Propagator contributions

@ on a channel on a vertex

— Vertex contributions

Both of them can be computated in the same way



3. Two specific contributions to EE

Using a general formula
OF
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we resolve each part on which the momentum is to be twisted,
and reconnect the Green function by the twisted part.
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3. Two specific contributions to EE

However, there're redundant correspondences.

EX)

\

We have summed up. 4 f
To be summed actually.

If we take both the twisted propagators, it will be doublecounting.



3. Two specific contributions to EE

The doublecounting is resolved by dividing.
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If we take both the twisted propagators, it will be doublecounting.



3. Two specific contributions to EE
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3. Two specific contributions to EE

4-pt in @* theory

d—1
(maive) Va1 [ d77 k) 3y [ (g) (g) 3A1) ((9)
S4pt _ T 12 /(27’{')d_1 2 |:E¢,2¢2 _I_ E¢2¢2 - E

3A 3A
l + 59, (—74) 29 (—74) 2% +

Vi1 dd_lk” 3A4 (g) 1 (9) 3)\4
Supt = — 39, + 53, (-5
4pt 12 / (271-)(1—1 2 PP T 2 T

Vd—l dd_lk”
= 19 (27r)d_1 log G¢52¢,2 (kt = 0, k‘”)



3. Two specific contributions to EE

We can generalize the analysis to the case where operators
are mixed in vertices.
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4. DIScusSsIon

- What set operators appears?

-- Those associated with connected Green function.

<O = B

- What about the other contributions to EE?

-- They all appear as relatively higher-loop corrections.

In particular, when we begin with an effective action,
such contributions are expected to be negligible...



4. DIScussion

- What is the interpret of the result?

-- In the position space, it is a sum of correlation
between subsystems via operators




5. Summary & Future work

Summary

- We have investigated EE in an interacting field theory with flat
spatial boundary.

- Orbifold technique to interacting theories

— EE Includes a special contributions represented with renormalized

two pt. functions of operators, and it would be dominant.
— Measurable in a sense?

Future work
- Justification of the dominance

- More precise investigation about renormalization
- More generalization

-- with spins and derivative couprings — OK.
-- with general subregions — Ongoing work (we are formulating now)



