Target space entanglement in quantum mechanics of fermions and matrices

Sotaro Sugishita (Nagoya U.) arXiv:2105.13726 [JHEP08(2021)046]

26 Nov. 2021, East Asia Joint Symposium on Fields and Strings 2021

Outline of my results

- We consider quantum entanglement in the target spaces of quantum theories.
 - Entanglement entropy (EE) in target spaces can be defined by extending the conventional definition of EE.
 - I investigated the target space EE for quantum mechanics.

I derived a formula of target space EE for QM of noninteracting fermions,

≈ one-matrix QM

and analyzed a simple model.

Motivation

- Entanglement is a key concept in holography.
 - Ryu-Takayanagi
 base space entanglement in bdry ~ area in bulk

Some holographic theories do not have the base space.

[Banks, Fischler, Shenker, Susskind (1996)]

- matrix QM (1+0)-dim QFT $X(t, \mathbf{z})$ no base space
- > A new proposal: Target space entanglement ~ Area in gravity

Target space entanglement

• For QFTs, we usually consider entanglement in the base space.

Target space entanglement has not been considered so much.

[Mazenc, Ranard (2019)], [Hampapura, Harper, Lawrence (2020)], [Das, Kaushal, Mandal, Trivedi (2020)], [Das, Kaushal, Liu, Mandal, Trivedi (2020)], [Frenkel, Hartnoll (2021)]

> Many basic properties have not yet been understood well.

Definition of entanglement entropy

ullet conventional base space EE $\mathcal{H}=\mathcal{H}_A\otimes\mathcal{H}_{ar{A}}, \quad (\mathcal{H}_A=\otimes_{x\in A}\mathcal{H}_x, \quad \mathcal{H}_{ar{A}}=\otimes_{x\in ar{A}}\mathcal{H}_x)$

density mat
$$ho \longrightarrow
ho_A = \operatorname{tr}_{\bar{A}}
ho \longrightarrow S_A = -\operatorname{tr}_A
ho_A \log
ho_A$$

> Problem

Hilbert space is not tensor-factorized w.r.t. the target space.

$$\mathcal{H}
eq \otimes_{\phi \in \mathbb{R}} \mathcal{H}_{\phi}$$

Take another definition (an algebraic approach)
 (used also in (lattice) gauge theories to define EE)

Entropy = Measure of uncertainty

- If we can only know **partial information** (i.e., use only a subset of operators), "**entropy**" is defined as a **measure of uncertainty** (or unknownness) about the whole info.

- lacktriangle Can define entropy for a subset of operators (subalgebra ${\mathcal A}$)
 - given state (total density mat ρ)
 - restricted operators (take a subalgebra ${\cal A}$)

Today, I skip this part.

No need of tensor product structure.
This general def can be applied to target space EE.

QM of non-relativistic fermions

 \succ Consider target space EE for QM of N fermions. (~ target space EE for $N \times N$ one-matrix QM)

Fermions with the Slater det wave functions

• Slater determinant $\psi(x_1,\ldots,x_N)=\frac{1}{\sqrt{N!}}\det\left(\chi_i(x_j)\right)$

$$\left[\int_{\text{entire}} dx \, \chi_i(x) \chi_j^*(x) = \delta_{ij} \right]$$

Take subalgebra on A. Then, EE is as follows.

$$S(A) = -\operatorname{tr}[X \log X + (1_N - X) \log(1_N - X)]$$

overlap matrix

$$X_{ij}(A) = \int_A dx \, \chi_i(x) \chi_j^*(x)$$

Upper bound on EE of fermions

$$S_A(\rho) \le N \log 2$$

• **Entropy is finite** if # of particle *N* is finite.

Note: Dim of Hilbert space is ∞ .

EE in QFTs is generally UV divergent.

QM is UV finite.

- ullet the maximum entropy $N \log 2$ is **extensive** (volume law)
- ✓ This is too generic. EE for the ground state is smaller. [sub-extensive (area law)]

For ground state of 1-dim free fermi gas $S_A(
ho) \sim \frac{1}{3} \log N$ (see soon)

Fermi gas on circle

1-particle eigenfunction

$$\chi_i(x) = \frac{1}{\sqrt{L}} e^{\frac{2\pi i}{L} n_i x} \quad (-L/2 \le x \le L/2)$$

$$n_1 = 0, n_2 = -1, n_3 = 1, n_4 = -2, n_5 = 2, \dots$$

$$n_1 = 0, n_2 = -1, n_3 = 1, n_4 = -2, n_5 = 2, \cdots$$

• ground state $\psi(x_1,\ldots,x_N)=\frac{1}{\sqrt{N!}}\det\left(\chi_i(x_j)\right)$ (suppose N= odd)

EE for a single interval

• EE of interval (length rL)

overlap matrix
$$X_{ij}(A) = \int_A dx \, \chi_i(x) \chi_j^*(x)$$

$$S(A) = -\operatorname{tr}[X \log X + (1_N - X) \log(1_N - X)]$$

Not linear in N

Large *N*

 \bullet the asymptotic form at large N (same as the XX model)

[Jin, Korepin (2004), Calabrese, Essler (2010)]

$$S \sim rac{1}{3} \log[2N \sin(\pi r)] + \Upsilon_1 \qquad \left[\Upsilon_1 = i \int_{-\infty}^{\infty} dw rac{\pi w}{\cosh^2(\pi w)} \log rac{\Gamma\left(rac{1}{2} + iw
ight)}{\Gamma\left(rac{1}{2} - iw
ight)} \sim 0.495
ight]$$

sub-extensive (area law)

Mutual information

mutual information of two intervals

$$I(I_1;I_2) = S(I_1) + S(I_2) - S(I_1 \cup I_2)$$
 (correlation of two regions)

analytic result (large N)

$$I(I_1; I_2) \sim \frac{1}{3} \log \frac{\sin^2(\pi d)}{\sin[\pi(d+r)]\sin[\pi(d-r)]}$$

finite at $N \to \infty$.

UV finite also in QFTs.

Agrees with the result of a CFT [Calabrese, Cardy (2004)] (free compact boson at self-dual radius). Why?

Summary

- Generalized def of entanglement based on the algebraic approach
 - We can define EE associated with a subalgebra Applicable to various situations

- Target space EE for identical particles
- 1d free fermi gas
 - numerical and analytical (large N) results
- want to consider multi-matrix QM
- > Implications for holography?