New Physics Searches positron and electron b

Kento Asai

(Saitama Univ. → Yokohama N

素粒子現象論研究会2021

Nov 7, 2021, Osaka City Univ

Based on KA, S. Iwamoto, Y. Sakaki, D. Ueda, JHEP 09 (2021) 183, a

Kento ASAI (Yokohama National Univ.) New Physics Searches at the ILC e^+ & e^- beam dum

● Introduction

● Beam Dump Experiment

• Result

● Appendix

International Linear Collider

ILC (International Linear Collider)

- ・Electron-positron linear collider
- ・250 GeV center-of-mass energy (-> upgrade to 500 GeV, 1TeV)
- \cdot 250 fb⁻¹ integrated luminosity

Introduction
Introduction
 Introduction
 Introduction

Beam dumps in ILC

Total 15 beam dumps in ILC

- ・ for electron, positron, and photon
- ・ Absorber (water, graphite, aluminum alloy)
- Energy (5, 15, 125 GeV e^- & e^+ , average 8 MeV γ)
- Normal operation \rightarrow E-5, E-8 (e^-) , E+5 (e^+) , E+7 (ν)

Result

● Appendix

Beam dumps in ILC

Main beam dump

- ・Absorber : liquid water
- ・Covered by iron shield and concrete
- ・11 m length

5/31 Kento ASAI (Yokohama National Univ.) New Physics Searches at the ILC e^+ & e^- beam dumps 素粒子現象論研究会2021 (Nov 7, 2021)

Water outlet

Result

● Appendix

■ Introduction ● Introduction ● Introduction ● Introduction ● Introduction ● Introduction → Pump Experiment

Beam dumps in ILC

Main beam dump

- ・Absorber : liquid water
- ・Covered by iron shield and concrete
- ・11 m length

Almost all e^+ & e^- are dumped at main beam dump

Use them for beam dump experiment

What a waste !!

Result

● Appendix

Water inlets

Water outlet

Beam dump experiment in ILC

Previous work S. Kanemura, T. Moroi, T. Tanabe, PLB 75 arXiv : 1507.02809 [hep-ph]

Dark photon search by ILC electron beam

Beam dump experiment in ILC

Previous work S. Kanemura, T. Moroi, T. Tanabe, PLB 75 arXiv : 1507.02809 [hep-ph]

Dark photon search by ILC electron beam

Kento ASAI (Yokohama National Univ.) New Physics Searches at the ILC e^+ & e^- beam dum

Beam dump experiment in ILC

Previous work

<u>Y. Sakaki, D. Ueda, PRD 103 (2021) 3</u>

- Electromagnetic shower (e & μ & γ) in ILC electron
- Production of Axion-like particle and light scalar b from $e \& \mu$, Primakoff process from γ

Kento ASAI (Yokohama National Univ.) New Physics Searches at the ILC e^+ & e^- beam dum

Introduction
Introduction
 Introduction
 Introduction

● Result

● Appendix

Beam dump experiment in ILC

Advantage

Intensity frontier

- Produce large number of light weakly-interacting BSM particles by high-intensity beam & fixed target

ILC beam dump experiment and ILC main experiment are in complementary relation

ILC experiment

○ Energy frontier

- Produce heavy interactive BSM particle by high energy beam

○ Low cost of construction and operation

- Possible to use beams and beam dumps for ILC main experiment

12/31 Kento ASAI (Yokohama National Univ.) New Physics Searches at the ILC e⁺ & e⁻ beam dumps 素粒子現象論研究会2021 (Nov 7, 2021)

Kento ASAI (Yokohama National Univ.) New Physics Searches at the ILC e^+ & e^- beam dumps 素粒子現象論研究会2021 (Nov 7, 2021) 14/31

Beam dump experiment in ILC

Advantage

- · Can use positron beam
	- Production by pair annihilation
	- Proton beam dump has highe than electron one

Large number of positrons are produced by electromagnetic shower in both electron and positron beam dumps

Annihilation process occurs in positron beam dump

How much better sensitivity of positron beam dump to search for new light particles than that of electron one?

Introduction
Introduction
 Introduction
 Introduction

Result

Appendix

Production Process

● Introduction

• Beam Dump Experiment

Result

Appendix

Beam Dump Experiment

(# of signal detection)

 $=$ (# of produced new particle) \times (Acceptance)

Beam Dump Experiment

Number of signals

Track length

- Integral of particle fluence over beam dump volume
- Calculated by Monte Carlo simulation [Geant4 & PHITS in our study]
- Beam particles have longer TL in high energy region, and every particle has comparable TL in low energy region

● Beam Dump Experiment

Introduction

Result

Appendix

 $#$ of incident to beam dump) \times (# density of table to particles in beam dump) \times (Track length of shower particles)

Beam Dump Experiment

Number of signals

Track length

- Integral of particle fluence over beam dump volume
- Calculated by Monte Carlo simulation [Geant4 & PHITS in our study]
- Beam particles have longer TL in high energy region, and every particle has comparable TL in low energy region

Introduction

Beam Dump Experiment

Result

Appendix

 $#$ of incident beam dump) \times (# density of table to particles in beam dump) \times (Track length of shower particles)

 $=$ (Probability of decaying in decay volume) \times (Angular cut)

 $=$ (Probability of decay in decay volume) \times (Angular cut)

New particles reach decay volume and are detected by decay into visible particles

Probability of decay between
$$
z_1 \sim z_2
$$

 $P_{\rm dec} = \int_{z_1}^{z_2} \frac{1}{l_{\rm dec}} e^{-z/l_{\rm dec}}$ l_{dec} : Decay length in laboratory frame

Beam Dump Experiment

Number of signals

● Beam Dump Experiment

Result

Appendix

For large angle (deviation from beam axis r_{\perp}), visible particles in decay volume do not hit detector

$$
\text{Angular cut}: \, \Theta(r_\text{det} - r_\perp)
$$

Result

Summary

- \bigcirc ILC e^{\pm} beam dump experiment has higher sensitivity to light $(\lesssim 1 \, \rm{GeV})$ weakly-interacting particles than past beam dump experiments
- \bigcirc We take account of productions by bremsstrahlung, Primakoff, and pair annihilation processes for dark photon, ALP, and light scalar models
- \bigcirc Although pair annihilation processes occur in both electron and positron beam dumps, positron case is more sensitive to heavy mass region because of primary $e⁺$ beam
- \bigcirc ILC beam dump experiments are necessary to exploit the full ability of the high-energy e^{\pm} beams, which are not inexpensive

Model

Lagrangian

Dark photon model

$$
\mathcal{L} \supset -\frac{1}{4} F_{\mu\nu}^{(A')} F^{(A')\mu\nu} - \frac{\epsilon}{2} F_{\mu\nu}^{(em)} F^{(A')\mu\nu} + \frac{m_{A'}^2}{2} A'_{\mu} A'^{\mu}
$$

Light scalar boson model

$$
\mathcal{L} = \frac{1}{2} (\partial_{\mu} S)^2 - \frac{1}{2} m_{\infty}^2 S^2 - \sum q_{\ell} S \bar{\ell} \ell - \frac{1}{2} q_{S\gamma\gamma} S F_{\mu\nu} F^{\mu}
$$

$$
\mathcal{L} = \frac{1}{2} (\partial_{\mu} S)^2 - \frac{1}{2} m_S^2 S^2 - \sum_{\ell = e, \mu, \tau} g_{\ell} S \ell \ell - \frac{1}{4} g_{S \gamma \gamma} S F_{\mu \nu} F^{\mu \nu}
$$

$$
g_e / m_e = g_{\mu} / m_{\mu} = g_{\tau} / m_{\tau}
$$
Loop induced

• Beam Dump Experiment

Result

● Appendix

Introduction

Introduction Model ● Beam Dump Experiment **•** Result **Lagrangian O** Appendix ALP model $\mathcal{L} \supset \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_{a}^{2} a^{2} + \sum_{\ell=e,\mu,\tau} \frac{1}{2} c_{a\ell\ell} \frac{\partial_{\mu} a}{\Lambda} \bar{\ell} \gamma^{\mu} \gamma_{5} \ell - \frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu}$ Case 1 $c_{aee} \neq 0, c_{a\mu\mu} = c_{a\tau\tau} = 0$ Loop induced Case 2 $c_{aee} = c_{a\mu\mu} = c_{a\tau\tau}$

Introduction

● Beam Dump Experiment

Result

Number of signal events and appendix

Production cross section

Pair annihilation

$$
\sigma(e^+e^- \to A') \simeq \frac{2\pi^2 \alpha \epsilon^2}{m_e} \delta\left(E_i - \frac{m_{A'}^2}{2m_e} + m_e\right) ,
$$

$$
\sigma(e^+e^- \to a) \simeq \frac{\pi m_e}{4} \left(\frac{c_{aee}}{\Lambda}\right)^2 \delta\left(E_i - \frac{m_a^2}{2m_e} + m_e\right) ,
$$

$$
\sigma(e^+e^- \to S) \simeq \frac{\pi g_e^2}{4m_e} \delta\left(E_i - \frac{m_S^2}{2m_e} + m_e\right)
$$

Result

● Appendix

Introduction

• Beam Dump Experiment

Production cross section

Primakoff process

where

 $G_2(t)$: electric form factor $t=-q^2\simeq E_i^2\theta_X^2+\frac{m_X^4}{4E_i^2}$ (*q* : momentum transfer)

Introduction

● Beam Dump Experiment

Result

 \bullet Appendix

Production cross section

Introduction

● Beam Dump Experiment

Result

● Appendix

$\frac{Bremsstrahlung}{\frac{d^2\sigma(e^{\pm}N \to e^{\pm}XN)}{dx \, d\theta_{\nu}}} = \frac{g_{Xee}^2 \alpha^2}{2\pi} x(1-x) E_i^2 \beta_X \frac{A^X|_{t=t_{min}}}{\tilde{n}^2} \chi,$ $\tilde{u} = -xE_i^2\theta_X^2 - m_X^2\frac{1-x}{r} - m_e^2x$ where $x = E_X/E_i$ $\beta_X = \sqrt{1 - m_X^2/E_i^2}$ x : effective flux of photon $\mathcal{A}^{A'}|_{t=t_{\rm min}} = 2\frac{2-2x+x^2}{1-x} + 4(m_{A'}^2+2m_e^2)\frac{\tilde{u}x+m_{A'}^2(1-x)+m_e^2x^2}{\tilde{u}^2} \ ,$ $\mathcal{A}^{a}|_{t=t_{\min}} = \frac{x^2}{1-x} + 2m_a^2 \frac{\tilde{u}x + m_a^2(1-x) + m_e^2 x^2}{\tilde{u}^2},$ $\mathcal{M}^{S}|_{t=t_{\rm min}} = \frac{x^2}{1-x} + 2(m_{S}^2 - 4m_{e}^2)\frac{\tilde{u}x + m_{S}^2(1-x) + m_{e}^2x^2}{\tilde{u}^2} \; ,$

Angular acceptance

Angle of initial particle i

 $\theta_1 = \begin{cases} 16 \text{ mrad}\cdot\text{GeV}/E_{e^\pm} & \text{(for shower electrons and positrons)},\\ 8 \text{ mrad}\cdot\text{GeV}/E_\gamma & \text{(for shower photons)} \end{cases}$

● Appendix

Result

Introduction

● Beam Dump Experiment

Production angle of new light particle

$$
\theta_2 = \begin{cases} \theta_X & \text{(for Primakoff process & bremsstrahlung)} \\ 0 & \text{(for pair annihilation)} \end{cases}
$$

Decay angle of SM particle from X

$$
\theta_3=\frac{\pi m_X}{2E_X}
$$

Angular acceptance

Introduction

● Beam Dump Experiment

Result

● Appendix

Typical deviation of emitted SM particle from beam axis

Angular acceptance

Introduction

● Beam Dump Experiment

Result

 \bullet Appendix

Averaged angled of initial particles

 $\theta_1 = \begin{cases} 16 \text{ mrad}\cdot\text{GeV}/E_{e^\pm} & \text{(for shower electrons and positrons)},\\ 8 \text{ mrad}\cdot\text{GeV}/E_\gamma & \text{(for shower photons)} \end{cases}$

Shower γ (e^{\pm}) with E_{γ} < 0.52 GeV $(E_{\gamma \, (e^{\pm})}$ < 1.05 GeV) always result in $r_1 > r_{\text{det}}$

In reality, θ_1 has a distribution, and shower particles with smaller momentum may pass the angular cut

Introduction

Beam Dump Experiment

Result

● Appendix

Angular acceptance

 10^{-1} 10^{-1} model 10^{-2} 10^{-2} (Case 1) 10^{-3} 10^{-3} $|c_{\rm{ae}}|$ / \land [GeV⁻¹] $|c_{\text{ae}}|/N$ [GeV⁻¹] 10^{-4} 10^{-4} 10^{-5} 10^{-5} **ILC-250 ILC-250** 20 yr. 1 vr. 20 vr. E_{th} : minimal energy No dis 10^{-6} 10^{-6} for detection $0.5~{\rm GeV}$ 0.5 GeV 10^{-7} 10^{-7} 11111 10^{-3} 10^{-2} 10^{-1} $10⁰$ 10^{-3} 10^{-2} $10⁰$ -4 $10¹$ $10[°]$ $10¹$ $10[°]$ 10^{-7} m_a [GeV] m_a [GeV] (b) positron beam dump (a) electron beam dump

Angular acceptance

Introduction

• Beam Dump Experiment

Result

● Appendix

Dark photon case

Introduction

• Beam Dump Experiment

Result

Dark photon case

Introduction

Beam Dump Experiment

Result

● Appendix

Large coupling boundary Pair annihilation

Decay probability

$$
\frac{m_{A'} \Gamma_{A'}}{E_{A'}^{(\text{lab})}} (l_{\text{dump}} + l_{\text{sh}}) \sim \text{const}
$$

$$
\implies \epsilon^2 \sim \text{const}
$$

Upper side of boundary does not depend on mass m_{A} ,

Introduction

Beam Dump Experiment

Result

● Appendix

Dark photon case

Introduction

● Beam Dump Experiment

Result

● Appendix

Dark photon case

Introduction

● Beam Dump Experiment

Result

 $rac{dl_{e^{\pm}}}{dE_{e^{\pm}}} \simeq \left(\frac{dl_{e^{\pm}}}{dE_{e^{\pm}}}\right)_{\text{shower}} \propto \frac{E_{\text{beam}}}{E_{e^{\pm}}^2}$
 $\sigma(e^{\pm}N \to e^{\pm}NA') \propto \frac{\epsilon^2}{m_{A'}^2}$

 $\left(l_{A'}^{\text{(lab)}}\right)^{-1} \propto \frac{\epsilon^2 m_{A'}^2}{E_{\text{(lab)}}^{\text{(lab)}}}$

● Appendix

Dark photon case

Introduction

• Beam Dump Experiment

